Большая цистерна мозга норма у плода таблица по неделям

Срок беременности 20-24 недели оптимален для изучения анатомических структур плода. Выявление на данном сроке пороков развития определяет дальнейшую тактику ведения беременности, а при грубом пороке, несовместимом с жизнью, позволяет прервать беременность.

Типовой протокол ультразвукового исследования в 20-24 недели представлен в таблице 5.

Структуру протокола УЗИ можно разделить на следующие основные группы:

  1. Сведения о пациентке (ФИО, возраст, начало последней менструации)
  2. Фетометрия (измерение основных размеров плода)
  3. Анатомия плода (органы и системы)
  4. Провизорные органы (существующие временно, такие как плацента, пуповина и околоплодные воды)
  5. Заключение и рекомендации

В данном протоколе, как и при УЗИ в 10-14 недель, указывается первый день последней менструации, относительно которого рассчитывается срок беременности. Также отмечается количество плодов и то, что плод является живым (это определяется по наличию сердцебиения и движениям плода). При наличии двух и более плодов каждый изучается и описывается отдельно. Обязательно указывается предлежание плода (отношение крупной части плода ко входу в таз). Оно может быть головным (плод предлежит головкой) и тазовым (предлежат ягодицы и/или ножки). Плод может располагаться поперечно, что должно быть отражено в протоколе.

Далее проводится фетометрия – измерение основных размеров плода, среди которых определяются: бипариетальный размер головы, ее окружность и лобно-затылочный размер, окружность живота, длины трубчатых костей слева и справа (бедренная, плечевая, кости голени и предплечья). Совокупность данных параметров позволяет судить о темпах роста плода и соответствии предполагаемому по менструации сроку беременности.

Бипариетальный размер головки плода (БПР) измеряется от наружной поверхности верхнего контура до внутренней поверхности нижнего контура теменных костей (рисунок 1, линия bd).

Лобно-затылочный размер (ЛЗР) – расстояние между наружными контурами лобной и затылочной костей (рисунок 1, линия ac).

Цефалический индекс – БПР/ЛЗР*100 % — позволяет сделать вывод о форме головы плода.

Окружность головы (ОГ) – длина окружности по наружному контуру.

Измерение размеров головки проводится при строго поперечном УЗ-сканировании на уровне определенных анатомических структур головного мозга (полости прозрачной перегородки, ножек мозга и зрительных бугров), как показано в правой части рисунка 1.

Рисунок 1 – Схема измерения размеров головки плода

1 – полость прозрачной перегородки, 2 – зрительные бугры и ножки мозга, bd– бипариетальный размер, ac– лобно-затылочный размер

Размеры живота измеряются при сканировании в плоскости, перпендикулярной позвоночному столбу. При этом определяется два размера –диаметр и окружность живота, измеряемая по наружному контуру. Второй параметр на практике используется чаще.

Далее измеряются длины трубчатых костей конечностей: бедренной, плечевой, голени и предплечья. Также необходимо изучить их структуру для исключения диагноза скелетных дисплазий (обусловленная генетически патология костной и хрящевой ткани, приводящая к серьезным нарушениям роста и созревания скелета и влияющая на функционирование внутренних органов). Изучение костей конечностей проводится с обеих сторон, чтобы не пропустить редукционные пороки развития (то есть недоразвитие или отсутствие частей конечностей с одной или с двух сторон).

Процентильные значения фетометрических показателей приведены в таблице 6.

Изучение анатомии плода – одна из самых главных составляющих ультразвукового исследования в 20-24 недели. Именно в этом сроке манифестируют (проявляют себя) многие пороки развития. Изучение анатомических структур плода проводится в следующем порядке: голова, лицо, позвоночник, легкие, сердце, органы брюшной полости, почки и мочевой пузырь, конечности.

Изучение структур головного мозга начинается еще при измерении размеров головы, ведь при внимательном рассмотрении врач может определить целостность костной структуры, наличие экстракраниальных (снаружи от черепа) и интракраниальных (внутричерепных) образований. Проводится исследование больших полушарий головного мозга, боковых желудочков, мозжечка, большой цистерны, зрительных бугров и полости прозрачной перегородки. Ширина боковых желудочков и переднезадний размер большой цистерны – в норме не превышает 10 мм. Увеличение этого показателя говорит о нарушении оттока или выработки жидкости и появлении гидроцефалии – водянки головного мозга.

Исследование позвоночника на всем протяжении в продольном и поперечном сканировании — позволяет выявить грыжевые выпячивания, в том числе spina bifida – расщепление позвоночника, часто сочетающееся с пороками развития спинного мозга.

При исследовании легких изучается их структура (можно определить наличие кистозных образований), размеры, наличие свободной жидкости в плевральной (грудной) полости, новообразования.

Далее изучается сердце на предмет наличия четырех камер (в норме сердце состоит из 2 предсердий и 2 желудочков), целостности межжелудочковых и межпредсердных перегородок, клапанов между желудочками и предсердиями, а также наличия и правильного отхождения/впадения крупных сосудов (аорта, легочный ствол, верхняя полая вена). Еще оценивается само расположение сердца, его размеры, изменения сердечной сумки (перикарда).

При сканировании органов брюшной полости – желудок и кишечник – определяется их наличие, месторасположение, размеры, что позволяет косвенно судить и о других органах брюшной полости. Кроме того, увеличение или уменьшение размеров живота при фетометрии свидетельствует о наличии патологии (например, водянка, грыжи, гепато- и спленомегалия – увеличение печени и селезенки). Далее исследуются почки и мочевой пузырь на их наличие, форму, размер, локализацию, структуру.

Изучение провизорных органов позволяет косвенно судить о состоянии плода, пороках развития, внутриутробных инфекциях и других состояниях, требующих коррекции.

Плацента изучается по следующим параметрам:

  1. Локализация. Врач ультразвуковой диагностики обязательно отражает локализацию плаценты, особенно ее положение относительно внутреннего зева шейки матки. Так как при неправильном прикреплении плаценты, например, когда она полностью перекрывает внутренний зев (полное предлежание плаценты), это сопровождается кровотечением во время беременности, а роды через естественные родовые пути невозможны. При расположении нижнего края плаценты ниже, чем 7 см от внутреннего зева, обязателен УЗИ-контроль в 27-28 недель.
  2. Толщина. Плацента – динамически развивающийся провизорный орган плода, поэтому во время беременности его толщина увеличивается в среднем с 10 до 36 мм, хотя эти значения варьируют в достаточно большом диапазоне, что представлено в таблице 7.

После 36 недель толщина плаценты обычно уменьшается. Несоответствие данного параметра нормативным значениям должно насторожить в первую очередь относительно наличия внутриутробного инфекционного процесса, конфликта по резус-фактору, а также несоответствия поступающих плоду питательных веществ и его потребностей.

  1. Структура. В норме она однородна, в ней не должно быть включений. Включения могут свидетельствовать о преждевременном старении плаценты (что может вызвать задержку развития плода), неоднородность говорит о возможном наличии инфекции.
  2. Степень (стадия) зрелости. Плацента изменяет свою структуру неравномерно, чаще всего этот процесс происходит от периферии к центру. При неосложненном течении беременности изменения проходят стадии от 0 до III последовательно (0 – до 30 недель, I – 27-36, II – 34-39, III – после 36 недель). Данный показатель позволяет прогнозировать осложненное течение беременности, наличие синдрома задержки развития плода (СЗРП). В настоящее время преждевременным созреванием плаценты считается наличие II степени до 32 и III степени до 36 недель.
Читайте также:  Сколько живет мозг без воздуха

Ультразвуковая оценка структуры плаценты приведена в таблице 8.

* хориальная мембрана – слой с ворсинками, обращенный к плоду

** паренхима – собственно ткань плаценты

*** базальный слой – внешняя поверхность, которой плацента примыкает к стенке матки

Для оценки околоплодных вод используется индекс амниотической жидкости. При его определении полость матки условно делится на 4 квадранта двумя плоскостями, проведенными через белую линию живота (соединительнотканная структура передней брюшной стенки, расположенная по срединной линии) вертикально и горизонтально на уровне пупка. Далее в каждом квадранте определяется глубина (вертикальный размер) наибольшего кармана амниотической жидкости (околоплодных вод), свободная от частей плода, все 4 значения суммируются и выводятся в сантиметрах. Если индекс меньше 2 см – это маловодие, если больше 8 см – многоводие. Это диагностически значимый признак наличия инфекции, СЗРП, пороков развития.

Показатели индекса амниотической жидкости в разные сроки беременности представлены в таблице 9.

Пуповина (провизорный орган, который соединяет эмбрион/плод с материнским организмом) в норме содержит 3 крупных сосуда: одну вену и две артерии. При многих наследственных патологиях встречается только одна артерия пуповины, что требует более внимательного ведения беременности.

Также обязательному исследованию подлежат шейка матки (на предмет ее длины, что важно при наличии угрозы прерывания беременности), придатки (на наличие кист яичников), стенки матки (если в анамнезе было кесарево сечение, оценивается состояние рубца).

На основании проведенного УЗ-исследования во втором триместре беременности делается вывод о наличии врожденных пороков развития (ВПР) плода или какой-то другой патологии и даются рекомендации.

Аннотация научной статьи по прочим медицинским наукам, автор научной работы — Козлова Олеся Ивановна

Проведен анализ 385 объемов головного мозга здоровых плодов в сроки от 16 до 27 недель беременности. Для оценки глубины большой цистерны мозга использовали режим мультипланарной реконструкции головного мозга плода для получения аксиального среза, проходящего через мозжечок. Измерялся переднезадний размер большой цистерны мозга от задней поверхности червя мозжечка до внутренней поверхности затылочной кости. В ходе проведенных исследований было установлено, что глубина большой цистерны мозга (ГБЦ) постепенно увеличивается на протяжении второго триместра беременности , составляя в среднем в 16/0-16/6 недель 2,8 (2,1-4,3) мм и 6,4 (4,48,4) мм в 26/0-26/6 недель. Разработанные нормативные процентильные значения глубины большой цистерны мозга (среднее, 5-й и 95-й процентили) могут быть использованы для оценки развития головного мозга плода при проведении ультразвукового исследования во втором триместре беременности .

Похожие темы научных работ по прочим медицинским наукам , автор научной работы — Козлова Олеся Ивановна

NORMAL SIZE VALUES FOR FETAL CISTERNA MAGNA IN SECOND TRIMESTER OF PREGNANCY

Fetal brain was retrospectively evaluated in 385 normal fetuses at 16-27 weeks of gestation. A multiplanar brain reconstruction mode was used to obtain the axial cerebral plane which passes through the cerebellum. All measurements were performed from the posterior aspect of the cerebellum to the inner surface of the occipital bone. The key research findings showed that the depth of the cisterna magna tends to increase during the second trimester and makes up 2.8 (range 2,1-4,3) mm at 16/0-16/6 weeks to 6.4 (range 4,4-8,4) mm at 26/0-26/6 weeks. The established percentile depth values for the fetal cisterna magna (mean, 5 th and 95 th percentile) can be used to assess normal fetal brain development while performing ultrasound in the second trimester of pregnancy

НОРМАТИВНЫЕ ПОКАЗАТЕЛИ РАЗМЕРОВ БОЛЬШОЙ ЦИСТЕРНЫ МОЗГА У ПЛОДО ВО ВТОРОМ ТРИМЕСТРЕ БЕРЕМЕННОСТИ

Институт повышения квалификации Федерального медико-биологического агентства России, Москва

Проведен анализ 385 объемов головного мозга здоровых плодов в сроки от 16 до 27 недель беременности. Для оценки глубины большой цистерны мозга использовали режим мультипланарной реконструкции головного мозга плода для получения аксиального среза, проходящего через мозжечок. Измерялся переднезадний размер большой цистерны мозга от задней поверхности червя мозжечка до внутренней поверхности затылочной кости. В ходе проведенных исследований было установлено, что глубина большой цистерны мозга (ГБЦ) постепенно увеличивается на протяжении второго триместра беременности, составляя в среднем в 16/0—16/6 недель 2,8 (2,1—4,3) мм и 6,4 (4,4— 8,4) мм — в 26/0—26/6 недель. Разработанные нормативные процентильные значения глубины большой цистерны мозга (среднее, 5-й и 95-й процентили) могут быть использованы для оценки развития головного мозга плода при проведении ультразвукового исследования во втором триместре беременности.

Ключевые слова: плод, второй триместр беременности, большая цистерна, ультразвуковое исследование.

NORMAL SIZE VALUES FOR FETAL CISTERNA MAGNA IN SECOND TRIMESTER OF PREGNANCY

Fetal brain was retrospectively evaluated in 385 normal fetuses at 16—27 weeks of gestation. A multiplanar brain reconstruction mode was used to obtain the axial cerebral plane which passes through the cerebellum. All measurements were performed from the posterior aspect of the cerebellum to the inner surface of the occipital bone. The key research findings showed that the depth of the cisterna magna tends to increase during the second trimester and makes up 2.8 (range 2,1—4,3) mm at 16/0—16/6 weeks to 6.4 (range 4,4—8,4) mm at 26/0—26/6 weeks. The established percentile depth values for the fetal cisterna magna (mean, 5th and 95th percentile) can be used to assess normal fetal brain development while performing ultrasound in the second trimester of pregnancy Key words: fetus, second trimester, cisterna magna, ultrasound examination.

Большая цистерна (мозжечково-мозговая) относится к цистернам подпаутинного пространства. Она расположена в углублении между продолговатым мозгом вентрально и мозжечком дорсально, сзади ограничена паутинной оболочкой. Это наиболее крупная из всех подпаутинных цистерн [3].

Глубина большой цистерны во второй половине беременности должна в норме быть в пределах 2— 10 мм [5]. Таким образом, верхней границей нормы глубины большой цистерны во второй половине беременности принято считать 10 мм, но ее размеры зависят от срока беременности и размеров плода [7]. По-

этому необходимо оценивать размеры большой цистерны с учетом срока беременности.

Увеличение глубины большой цистерны характерно для таких аномалий развития головного мозга, как мальформация Денди—Уокера [2], арахноидальная киста задней черепной ямки. Также увеличение большой цистерны характерно как для нехромосомных синдромов (синдром Юберта) [6], так и для хромосомных синдромов (трисомия 18 [9], трисомия 21 [4]).

Поэтому необходима разработка процентильных нормативов глубины большой цистерны мозга для ее объективной оценки при проведении второго скринингового ультразвукового исследования плода.

Разработать эхографические нормативные значения глубины большой цистерны плода в 16—27 недель беременности.

Читайте также:  Как эмоции управляют мозгом ричард дэвидсон

Для разработки нормативных процентильных значений глубины большой цистерны (ГБЦ) у плода были отобраны результаты обследования 385 беременных при сквозном эхографическом наблюдении в сроки от 16 до 27 недель. Для окончательного анализа были отобраны только данные, полученные при обследовании пациенток, у которых беременность завершилась срочными родами и рождением нормальных здоровых детей. Возраст обследованных пациенток в среднем составил 28 лет.

Выпуск 4 (52). 2014

Критериями отбора пациенток явились:

1) известная дата последней менструации при 26—30 дневном цикле;

2) неосложненное течение беременности;

3) наличие одноплодной беременности без признаков какой-либо патологии у плода;

4) отсутствие факта приема оральных контрацептивов в течение 3 месяцев до цикла зачатия;

5) срочные роды нормальным плодом с массой при рождении в пределах нормативных значений (более 10-го и меньше 90-го процентиля по массе и длине тела в зависимости от гестационного возраста).

Для оценки ГБЦ использовали режим мультипланарной реконструкции головного мозга плода в целях получения аксиального среза с помощью объемной эхографии. Оценку ГБЦ осуществляли в аксиальной плоскости, проходящей через заднюю черепную ямку и мозжечок, измерения — от задней поверхности червя мозжечка до внутренней поверхности затылочной кости.

Измерения ГБЦ проводились ретроспективно после забора объемов изображения головного мозга плода на ультразвуковом аппарате Voluson E8 (GE) с помощью специального трансдюсера объемного сканирования. Анализ объемных реконструкций осуществлялся на персональном компьютере при использовании специальной программы 4D View (GE). Статистический анализ проводился с использованием электронных таблиц Excel 2011.

И ИХ ОБСУЖДЕНИЕ

В ходе проведенных нами исследований установлено, что большая цистерна мозга плода является легко идентифицируемой структурой при использовании аксиальной плоскости сканирования во втором триместре беременности. В наших исследованиях определение ГБЦ было достигнуто в 100% успешно забранных объемных реконструкций.

При изучении ГБЦ плода было установлено постепенное ее увеличение в сроки от 16 до 27 недель беременности. Согласно нашим результатам, численные значения ГБЦ плода в среднем составили 2,8 (2,1—4,3) мм в 16/0—1/6 недель и 6,4 (4,4—8,4) мм — в 26/0—26/6 недель беременности (табл.).

Нормативные процентильные показатели (5-й, 50-й, 95-й) ГБЦ плода во втором триместре беременности

Срок беременности, недели ГБЦ, мм

16/0—16/6 2,1 2,8 4,3

17/0—17/6 2,8 3,6 4,3

18/0—18/6 2,8 4,4 6,0

19/0—19/6 3,0 4,6 6,2

20/0—20/6 3,2 4,8 6,4

21/0—21/6 3,4 5,1 6,8

22/0—22/6 3,6 5,4 7,2

23/0—23/6 3,9 5,7 7,5

24/0—24/6 4,1 6,0 7,9

Срок беременности, недели ГБЦ, мм

25/0—25/6 4,2 6,2 8,2

26/0—26/6 4,4 6,4 8,4

Сравнительный анализ полученных нами данных с результатами зарубежных исследователей показал, что первые отечественные нормативные показатели ГБЦ отличаются от зарубежных [9], но эти различия не носили достоверного характера.

Таким образом, проведенные нами исследования убедительно продемонстрировали реальную возможность оценки ГБЦ плода при скрининговом ультразвуковом исследовании во втором триместре беременности. Разработанные нами процентильные значения ГБЦ могут быть использованы для оценки развития головного мозга плода во втором триместре беременности.

1. Медведев М. В. Основы ультразвукового скрининга в 18—21 неделю беременности. 2-е изд., доп. и перераб. — М.: Реал Тайм, 2013. — С. 55.

2. Медведев М. В., Алтынник Н. А., Лютая Е. Д. // Вестник Волгоградского государственного медицинского университета. — 2012. — № 3 (43). — С. 41—43.

3. Сапин М. Р., Бочаров В. Я., Никитюк Д. Б. и др. Анатомия человека. — 5-е изд., доп. и перераб. — М.: Медицина, 2001. — Т 2. — 454 с.

4. Lai T. H, Cheng Y. M, Chang F M. Prenatal diagnosis of trisomy 21 in a fetus with an enlarged cisterna magna // Ultrasound Obstet. Gynecol. — 2002. — Vol. 20. — P 413—416.

5. Mahony B. S., Callen P. W, Filly R. A., Hoddick W. K. The fetal cisterna magna // Radiology. — 1984. — Vol. 153. — P 773—776.

6. Quarello E., Molho M., Garel C., et al. Prenatal abnormal features of the fourth ventricle in Joubert syndrome and related disorders // Ultrasound Obstet. Gynecol. — 2014. — Vol. 43. — P 227—232.

7. Salomon L. J., Stirnemann J., Bernard J., et al. Cisterna magna measurements in normal fetuses in relation to gestational age and other covariables // Ultrasound Obstet. Gynecol. — 2010. — Vol. 36 ( Suppl. 1). — P 52—167.

8. Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’ // Ultrasound Obstet. Gynecol. — 2007. — Vol. 29. — P 109—116.

9. Steiger R. M., Porto M., Lagrew D. C., Randall R. Biometry of the fetal cisterna magna: estimates of the ability to detect trisomy 18 // Ultrasound Obstet. Gynecol. — 1995. — Vol. 5. — P 384—390.

ГОЛОВНОЙ МОЗГ И ПОЗВОНОЧНИК

В клинической практике применяется методика 4 горизонтальных плоскостей.

Первая плоскость сканирования применяется для оценки боковых желудочков головного мозга. Для идентификации вентрикуломегалии и гидроцефалии следует измерять ширину боковых желудочков. Пороговой величиной, при превышении которой ставится диагноз вентрикуломегалии, является 10 мм.

Вторая плоскость сканирования проходит через лобные и затылочные рога боковых желудочков. При ее оценке следует помнить, что во многих случаях расширение желудочковой системы головного мозга плода начинается с задних рогов боковых желудочков. Поэтому их оценке следует уделять особое внимание. При нормальном развитии плода их ширина до 32 нед. беременности не должна превышать 10 мм [4]..

Третья аксиальная плоскость проходит на уровне оптимального измерения бипариетального и лобно-затылочного размеров головы. В этой плоскости четко определяются ножки мозга и зрительные бугры (таламусы), образующие четверохолмие, а между ними III желудочек Ширина III желудочка в норме варьирует от 1 до 2 мм в сроки от 22 до 28 нед. беременности.

С обеих сторон от таламусов располагаются извилины гиппокампа, представленные округлыми пространствами, медиально ограниченные цистернами, а латерально — боковыми желудочками.

Кпереди от таламусов определяются передние рога боковых желудочков, которые разделены полостью прозрачной перегородки. Визуализация полости прозрачной перегородки имеет принципиальное значение для исключения различных пороков головного мозга и в первую очередь голопрозэнцефалии.

Для оценки мозговых структур, располагающихся в задней черепной ямке, датчик необходимо развернуть и сместить кзади от плоскости, в которой определяются основные размеры головы плода. При этом последовательно изучаются полушария и червь мозжечка на всем протяжении, а также большая цистерна головного мозга (рис. 62). Это сечение используется не только для исключения синдрома Денди-Уокера, который характеризуется дефектом червя мозжечка, но и при необходимости для определения поперечного размера мозжечка (рис. 6.3). Гипоплазию мозжечка устанавливают в случаях, когда его поперечный диаметр находится ниже 5-го процентиля.

Читайте также:  Пересадка костного мозга при лимфоме

Большая цистерна головного мозга входит в протокол анатомических структур плода, подлежащих обязательной оценке в ходе скрининговой эхографии во II триместре, т.к. ее расширение расценивается как эхомаркер ХА. Расширение большой цистерны диагностируют в том случае, когда ее ширина превышает 95-й процентиль нормативных значений. Максимальный размер большой цистерны не превышает 11мм.

Данная методика, дополнительно к описанным выше, включает в себя сагиттальную и венечную плоскости сканирования мозга.

Для исключения гипоплазии/дисплазии мозолистого тела проводят оценку его длины и толщины при сагиттальном сканировании, а также ширины, которая определяется в венечной плоскости. Венечные плоскости получают при сканировании головы плода вдоль латерально-латеральной оси (рис. 6.6). При переднем венечном сечении мозолистое тело визуализируется в виде эхонегативного образования между передними рогами боковых желудочков и межполушарной щелью. Кроме оценки мозолистого тела, венечные плоскости оказывают существенную помощь в установлении лобарной формы голопрозэнцефалии, при которой происходит слияние передних рогов боковых желудочков.

Борозды и извилины конечного мозга визуализируются в разных плоскостях сканирования. Количество определяемых борозд увеличивается с возрастанием срока беременности [2, 5]. Однако в настоящее время надежные критерии диагностики их патологии не разработаны.

Важное дополнительное значение при врожденных пороках головного мозга у плода имеет сканирование в режиме ЦДK, которое позволяет оценить практически все основные сосуды головного мозга и установить сосудистый генез обнаруженных пороков,

Позвоночник плода необходимо оценивать на всем протяжении как в продольной, так и поперечной плоскостях. Большой диагностической ценностью обладает фронтальная плоскость сканирования, когда при spinа bifida возможна визуализация отсутствия задних дуг позвонков, кожи и мышц над дефектом. Сагиттальная плоскость используется для оценки изгибов позвоночника, служащих косвенным признаком spina bifida, и в случаях больших грыжевых образований при открытой форме порока — для оценки обширности поражения. Сканирование в поперечной плоскости позволяет оценить целостность позвоночных колец, нарушаемых при закрытой spina bifidа.

Аномалии ЦНС плода

Врожденные пороки развития центральной нервной системы плода по частоте встречаемости занимают одно из лидирующих мест в популяции, составляя 10 до 30% от всех пороков развития, доминируя в их структуре.

Последние годы отмечены возрастающим интересом исследователей к изучению ЦНС у плода, и это не случайно, так как заболеваемость и смертность вследствие врожденных пороков мозга в настоящее время занимает одно из первых мест среди всех пороков развития в младенческом возрасте. По нашему мнению, одной из основных причин такого положения является несвоевременность выявления и сложность точной дифференциальной диагностики ряда нозологических форм врожденных пороков развития мозга у плода.

Аномалии развития ЦНС- большая группа заболеваний, обусловленных разными причинами и имеющих различный прогноз для жизни и здоровья. Некоторые врожденные пороки развития ЦНС несовместимы с жизнью, другие аномалии приводят к тяжелым неврологическим нарушениям и инвалидности. В редких случаях аномалии ЦНС подлежат внутриyтpобному лечению.

Анэнцефалия и акрания

Анэнцефалия — является одним из наиболее частых пороков ЦНС, при котором отсутствуют полушария мозга и свод черепа. При экзэнцефалии отсутствуют также кости свода черепа, но имеется фрагмент мозговой ткани. Акрания характеризуется отсутствием свода черепа, при наличии аномально сформированного головного мозга. Частота анэнцефалии составляет 1 случай на 1000 новорожденных. Акрания является более редкой патологией, чем анэнцефалия.

Анэнцефалия является результатом нарушения закрытия рострального отдела нейропоры в течение 28 дней с момента оплодотворения. Патоморфологическая основа акрании неизвестна. Динамические ультразвуковые исследования позволили установить, что акрания, экзэнцефалия и анэнцефалия являются этапами развития одного порока. Этим, вероятно, объясняется то, что частота экзэнцефалии в ранние сроки беременности превышает частоту анэнцефалии и, наоборот, анэнцефалия доминирует над акранией и экзэнцефалией во IIи III триместрах беременности [12].

При ультразвуковом исследовании плода диагноз анэнцефалии устанавливается при обнаружении отсутствия костей мозгового черепа и ткани головного мозга (рис. 6.8). В большинстве случаев над орбитами визуализируется гетерогенная структура неправильной формы, которая представляет собой сосудистую мальформацию первичного мозга. Диагноз акрании ставится в тех случаях, когда мозг плода не окружен костным сводом (рис. 6.9).

Дифференциальный диагноз анэнцефалии и экзэнцефалии в большинстве случаев, особенно в ранние сроки беременности, представляет значительные трудности. Отчетливое выявление фрагмента мозговой ткани позволяет предполагать наличие экзэнцефалии. Существенную помощь в дифференциальной диагностике этих пороков оказывает сканирование в режиме ЦДК. При анэнцефалии картина сосудистой системы головного мозга отсутствует из-за окклюзии на уровне внутренних сонных артерий. Многоводие может быть диагностировано как при анэнцефалии, так и при акрании.

Анэнцефалию можно диагностировать в I триместре беременности с помощью трансвагинального исследования, хотя в ранние сроки трудно отличить измененный первичный мозг от нормального мозга. Наиболее ранняя диагностика акрании, по данным литературы, была произведена в 11 нед. с помощью трансвагинальной эхографии. В связи с тем, что кости свода черепа плода в сроки 10-11 нед. кальцифицированы лишь частично, диагноз акрании необходимо ставить с осторожностью [13].

Анэнцефалия и акрания — пороки мультифакториальной природы. Анэнцефалия может входить в состав синдрома амниотических тяжей (рис. 3.93), сочетаться с хромосомными аберрациями (трисомия 18, кольцеваяхромосома 13), возникать в результате действия химиотерапии, на фоне диабета матери и гипертермии [1418]. Анэнцефалия входит в состав синдрома Меккеля-Грубера и гидролетального синдрома [14, 19]. Анэнцефалия часто сочетается с расщеплением губы и неба, аномалиями ушей и носа, пороками сердца, патологией желудочно-кишечного тракта и мочеполовой системы [20, 21]. Описано сочетание акрании с синдромом LL-амелии [22].

Пренатальное обследование при постановке диагноза анэнцефалии/акрании/экзэнцефалии должно включать кариотипирование и тщательное ультразвуковое исследование.

Описанные пороки относятся к абсолютно летальным порокам развития [1]. Если пациентка желает пролонгировать беременность; родоразрешение должно проводиться в интересах матери, без расширения показаний к кесареву сечению. В этих случаях родителей следует предупредить, что 50% плодов с анэнцефалией родятся живыми, 66%% из них проживут несколько часов, некоторые могут жить в течение недели [13].

Цефалоцеле представляет собой выход мозговых оболочек через дефект костей, черепа. В случаях, когда в состав грыжевого мешка входит мозговая ткань, аномалия носит название энцефалоцеле. Наиболее часто дефекты располагаются в области затылка, но могут выявляться и в других отделах (лобном, теменном, назофарингеальном) (рис. 6.11) [13]. Частота встречаемости аномалии составляет 1 случай на 2000 живорожденных [23].

Читайте также:
Adblock
detector