Наука изучающая мозг человека

Как учёные создают модели человеческого мозга и какие этические проблемы поднимают подобные исследования.

Журнал Nature опубликовал The ethics of experimenting with human brain tissue коллективное письмо 17 ведущих мировых нейробиологов, в котором учёные обсудили прогресс в области развития моделей мозга человека. Опасения специалистов заключаются в следующем: вероятно, уже в ближайшее время модели станут настолько продвинутыми, что начнут воспроизводить не только строение, но и функции человеческого мозга.

Мозг в аквариуме

Подробности эксперимента авторы не разглашают — они готовят публикацию в научном журнале. Тем не менее даже бедный на детали доклад Сестана вызвал большой интерес и множество спекуляций на тему дальнейшего развития технологии. Судя по всему, технически сохранение мозга не намного сложнее, чем сохранение любого другого органа для трансплантации, например сердца или почки.

Это значит, что теоретически можно сохранить в более или менее естественном состоянии и мозг человека.

Где скрывается сознание

Более того, при помощи современных методов, таких как функциональная магнитно-резонансная томография, учёные могут проследить за тем, какие именно участки мозга активируются в процессе выполнения конкретных умственных упражнений. Тем не менее понятие сознания в целом слишком эфемерно, и учёные до сих пор не сошлись во мнении, кодируется ли оно совокупностью процессов, происходящих в мозге, или за него отвечают определённые нейронные корреляты.

Как рассказывает в своей книге Кандель, у пациентов с разделёнными хирургическим путём полушариями мозга сознание как бы расщепляется на два, каждое из которых воспринимает независимую картину мира.

Эти и подобные случаи из нейрохирургической практики указывают по крайней мере на то, что для существования сознания целостности мозга как симметричной структуры не требуется. Некоторые учёные, в том числе первооткрыватель структуры ДНК Фрэнсис Крик, который под конец жизни увлёкся нейробиологией, считают, что наличие сознания определяется конкретными структурами в мозге.

Очнуться в биореакторе


Трёхмерные органоиды в чашке Петри / Genome Institute of Singapore

В процессе развития эмбриона его органы формируются до определённых стадий согласно некоей заложенной в генах программе по принципу самоорганизации. Не составляет исключения и нервная система. Исследователи обнаружили, что, если в культуре стволовых клеток при помощи определённых веществ индуцировать дифференциацию в клетки нервной ткани, это приводит к самопроизвольным перестройкам в клеточной культуре, похожим на те, что происходят при морфогенезе нервной трубки эмбриона.

Понятно, что двумерные культуры представляют собой сильно упрощённую модель. Принцип самоорганизации нервной ткани помог учёным быстро перейти на трёхмерные структуры, называемые сфероидами и церебральными органоидами. На процесс организации ткани можно повлиять изменением начальных условий, таких как исходная плотность культуры и гетерогенность клеток, и экзогенными факторами. Модулируя активность определённых сигнальных каскадов, можно добиться даже формирования у органоида продвинутых структур, таких как глазной бокал с эпителием сетчатки, реагирующим Cell diversity and network dynamics in photosensitive human brain organo > на свет.


Схема самоорганизации клеточной массы, полученной из стволовых клеток человека (hPS), в мозговой органоид c глазным бокалом под действием градиента ростовых факторов и неравномерного размножения клеток / Sergiu P. Pașca, Nature 2018

Использование специального сосуда и обработка ростовыми факторами позволила учёным направленно получить Modeling human cortical development in vitro using induced pluripotent stem cells человеческий церебральный органоид, соответствующий переднему мозгу (полушариям) с корой, развитие которой, судя по экспрессии генов и маркеров, соответствовала первому триместру развития плода.

Что немаловажно, стволовые клетки для выращивания таких структур можно брать у конкретных людей, например у пациентов с генетически обусловленными заболеваниями нервной системы. А успехи генной инженерии позволяют предположить, что скоро учёные смогут пронаблюдать in vitro за развитием мозга неандертальца или денисовца.

Целью учёных было не только воспроизвести эволюцию мозга in vitro, но и изучить молекулярные процессы, приводящие к микроцефалии — аномалии развития, которая наблюдается, в частности, при заражении эмбриона вирусом Зика. Для этого авторы работы вырастили такой же мини-мозг из клеток больного.


Срез церебрального органоида с разными отделами, окрашенный при помощи иммуногистохимии на маркеры нейронов (зелёным) и клеток-предшественниц (красным) / Madeline A. Lancaster et al, Nature 2013

Несмотря на впечатляющие результаты, учёные были уверены, что такие органоиды неспособны что-либо осознавать. Во-первых, в настоящем мозге содержится около 80 миллиардов нейронов, а в выращенном органоиде их на порядки меньше. Таким образом, мини-мозг просто физически не способен в полной мере выполнять функции настоящего мозга.

Очнуться в чужом теле


Схема интеграции человеческого мозгового органоида в мозг мыши (вверху) и изображение прижившегося органоида (внизу) / Abed AlFatah Mansour et al, Nature Biotechnology 2018

Как ни удивительно, на поведении подопытных мышей интеграция куска человеческой нервной ткани не сказалась. В тесте на пространственное обучение мыши с химерным мозгом демонстрировали те же результаты, что и обычные мыши, и отличались даже худшей памятью — исследователи объяснили это тем, что для имплантации им проделали отверстие в коре полушарий.

Тем не менее целью этой работы было не получение умной мыши с человеческим сознанием, а создание in vivo модели церебральных органоидов человека, снабжённых сетью сосудов и микроокружением для различных биомедицинских целей.

Эксперимент совсем другого рода поставили Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice учёные из Центра трансляционной нейромедицины университета Рочестера в 2013 году. Как было упомянуто ранее, вспомогательные клетки мозга (астроциты) человека сильно отличаются от клеток других животных, в частности мышей. По этой причине исследователи предполагают, что астроциты играют немаловажную роль в развитии и поддержании функций мозга человека. Чтобы проверить, как будет развиваться химерный мозг мыши с человеческими астроцитами, учёные подсадили предшественников вспомогательных клеток в мозг мышиных эмбрионов.

Оказалось, что в химерном мозге человеческие астроциты работают в три раза быстрее, чем мышиные. Более того, мыши с химерным мозгом оказались существенно умнее обычных по многим параметрам. Они быстрее соображали, лучше обучались и ориентировались в лабиринте. Наверное, химерные мыши не мыслили как люди, но, возможно, смогли почувствовать себя на другой ступени эволюции.

Тем не менее для изучения человеческого мозга грызуны далеко не идеальная модель. Дело в том, что человеческая нервная ткань созревает согласно неким внутренним молекулярным часам, и перенесение её в другой организм не ускоряет этот процесс. Учитывая, что мыши живут всего два года, а полное формирование человеческого мозга занимает пару десятилетий, любые долгосрочные процессы в формате химерного мозга изучать невозможно. Возможно, будущее нейробиологии всё-таки за человеческими мозгами в аквариумах — для выяснения того, насколько это этично, учёным надо всего лишь научиться читать мысли, а современная техника, кажется, скоро позволит это сделать.

Читайте также:  Российский научно-исследовательский нейрохирургический институт имени профессора а л поленова

Безусловно, самый загадочный и малопонятный орган во всем нашем теле – это мозг. Это источник наших мыслей, наших эмоций и нашей памяти. Он отслеживает все, что происходит внутри нашего тела, благодаря ему бьется сердце, течет кровь и работают легкие без сознательных усилий с нашей стороны. Кроме того, он несет ответственность за все сознательные усилия, которые мы делаем. Это своего рода оригинальный суперкомпьютер.

Когда плоду в утробе матери всего лишь 4 недели, клетки головного мозга формируются со скоростью четверть миллиона в минуту. В конце концов, миллиарды нейронов будут между собой взаимодействовать и создавать триллионы соединений. Без мозга контролировать тело и жизнь будет невозможно.

К счастью, человеческий мозг предоставляет нам замечательную способность и возможность его исследовать. Изучение мозга дало потрясающие результаты и помогло нам лучше узнать себя.

Рост передовых медицинских технологий был крупным прорывом в вопросах исследования мозга. Многие методы сканирования мозга уходят своими корнями в 1970-е годы, и именно в это десятилетие была изобретена аксиальная компьютерная томография.

Пациенты проходят эту процедуру лежа на узкой кровати, помещенной в специальную трубу, которая вращается вокруг тела человека. В результате исследователь получает множество рентгеновских снимков с разных углов. Далее эти снимки используются для получения изображения поперечного сечения кости и ткани. В то время как рентгеновский снимок – это одно изображение, к примеру, переломанной кости, томография – это многослойное 3-D изображение.

Так как же это работает в мозге? Исследователи вводят пациенту вещество на основе йода, которое блокирует получение рентгеновских изображений. Затем оно следует своим путем через мозг, преодолевая различные препятствия. Стоит отметить, что при помощи такого рода томографии даже удается обнаружить психические расстройства у людей, в том числе и шизофрению.

Несмотря на то, что томография полезна для изучения структуры мозга, исследователи разработали другой процесс, который использует в работе магнитное поле, обеспечивающее экспертов еще более детальными снимками человеческого мозга.

В то время, как рентгеновские технологии, ультразвуковая и компьютерная томография помогают нам заглянуть внутрь тела, фактически не повреждая его целостности, ни один из этих способов не мог предложить столь подробный анализ, как это смогла сделать магнитно-резонансная томография (МРТ). Используя радиочастотные импульсы и сильное магнитное поле, данный способ открыл новые горизонты для исследования мозга.

Интересно, что способность мозга выполнять различные задачи не высечена из камня. Исследование с использованием МРТ-технологии изучало студентов с дислексией до и после специализированной годовой программы обучения. После прохождения программы у студентов наблюдалась повышенная активность в области мозга, ответственной за чтение. Это означало, что выполнение определенной задачи может на самом деле улучшить мозговую деятельность той области, которая задействована в решении задачи.

МРТ также полезна и в других исследованиях. К примеру, МРТ однояйцевых и разнояйцевых близнецов помогла специалистам обнаружить связь между интеллектом и количеством серого вещества в лобной доли мозга. Другое исследование, проведенное учеными из университета Монреаля, использовало МРТ для изучения эффекта воздействия медитации на боль. Эксперты обнаружили, что люди, которые медитируют, знают о боли, однако, части их мозга, которые обрабатывают и интерпретируют их боль, менее активны, чем у людей, которые не медитируют.

Позитронно-эмиссионная томография позволяет нам увидеть метаболическое функционирование мозга на клеточном уровне. Это делается путем введения специального препарата, содержащего безопасную дозу радиоактивного материала. Люди, которые проходят данную процедуру, во время какой-либо деятельности (к примеру, чтение вслух или попытка вспомнить какую-либо информацию) привлекают большее количество крови к мозгу, а вместе с тем и радиоактивного материала. Сканер, подключенный к компьютеру, обнаруживает, что началось выделение энергии радиоактивного вещества, далее он обрабатывает полученную информацию в 3-D. Эти изображения дают сведения о потоках крови, глюкозы и кислорода через ткани, что позволяет врачам и исследователям выявить ткани и органы, в работе которых происходят сбои.

Анализируя количество глюкозы, обрабатываемое в каждом регионе мозга, исследователи отметили, что они могут использовать ПЭТ-сканирование для прогнозирования с высокой степенью точности вероятности развития некоторых проблем с памятью в будущем.

При помощи данной методики также можно выявить метаболический дисбаланс в мозге, который ответственен за развитие эпилепсии и других проблем нервной системы. Данное сканирование также помогает врачам выявить инсульт и транзиторные ишемические атаки.

Помимо прочего, этот способ может помочь врачам выявить различие между доброкачественными и злокачественными опухолями головного мозга и способен точно определить в какой именно части мозга произошел сбой, приведший к припадку.

Хотя все перечисленные выше способы являются неинвазивными, иногда исследователям необходимо прибегнуть к инвазивным процедурам, которые буквально шокируют.

Исследование человеческого поведения, процессов обучения и функций мозга уже много лет идут рука об руку с проведением подобных процедур на мышах и приматах. Это связано с явным генетическим сходством между видами. Однако, некоторые функции свойственны только человеку, к примеру, способность разговаривать.

Как это часто бывает в процессе исследования мозга, изучение одной его части часто может дать совершенно неожиданные данные о функционировании другой. Одним из таких исследований была имплантация электродов в мозг больных эпилепсией людей. Целью исследования было выявить, какие части мозга могут быть изъяты с целью лечения эпилепсии, при этом, не нарушая работу всех других и без какого-либо вреда для здоровья пациента. Эта процедура известна как внутричерепная электрофизиология. Как только врачи имплантировали электроды, пациентам было поручено молча прозондировать ряд слов, которые они видели на экране. Доктора тем временем фиксировали путь и длительность электрических импульсов в мозгу, пока пациенты выполняли поставленную задачу.

Используя внутричерепную электрофизиологию, исследователи эпилепсии обнаружили, что для идентификации слова человеческому мозгу требуется около 200 миллисекунд. Далее они отметили, что на произношение слова про себя уходит 320 миллисекунд, а для сбора информации, необходимой для подбора мозгом звуков, чтобы произнести слово, уходит еще 450 миллисекунд.

Психологи, педагоги, философы и нейробиологи уже давно спорят о том, что же такое интеллект. Существует ли единственный, количественный, общий интеллект, который может быть измерен при помощи IQ тестов? Или все же есть несколько форм и типов интеллекта? Какие части мозга за него отвечают?

В настоящее время технологии позволяют нам ответить на некоторые из этих широко обсуждаемых вопросов. При помощи использования различных методов визуализации, исследователи в 2007 году расположили «станции» на пути, по которым информация поступает в мозг. Они полагают, что интеллект связан именно с тем, как хорошо и быстро информация проходит через миллиарды сетей, созданных клетками мозга. В итоге, эксперты выяснили, что самые важные «станции», которые связаны с обработкой информации, — это внимание, память и язык.

Читайте также:  В цвет залипает мозг и розгами покоцал спины

Это и доказывает тот факт, что общий интеллект не является отличительной особенностью какой-либо одной части мозга. Напротив, способность мозга использовать различные методы обработки информации и связывать их вместе и определяет насколько мы умны.

Неизвестные клетки и даже участки мозга, новые функции и способности, новые терапевтические стратегии – это лишь некоторые из открытий, сделанных нейробиологами в уходящем году.

Цифровая реконструкция «нейрона шиповника».

Изображение срезов человеческого мозга. Слева от кровеносного сосуда можно заметить бактерии, вероятно, входящие в состав микробиоты мозга.

Фрагменты древней вирусной ДНК играют важнейшую роль в передаче данных между нейронами.

Высокий уровень «гормона стресса» кортизола связали с уменьшением объёма мозга и ухудшением памяти.

Учёные разглядели эндорестиформное ядро благодаря окрашиванию тканей ферментом под названием ацетилхолинэстераза.

Чуть больше килограмма тканей и нервных клеток формируют уникальный орган, самый загадочный для учёных – человеческий мозг. Нейробиологи не перестают удивляться его разнообразным возможностям и функциям, тем более, что открыты и изучены ещё далеко не все из них.

Редакция научного портала Live Science выделила десятку самых значимых исследований в области нейробиологии в 2018 году.

«Нейроны шиповника»

Американо-венгерская команда учёных обнаружила новый тип клеток мозга, которые встречаются исключительно у человека и, возможно, у других приматов. Эти клетки первооткрыватели назвали «нейронами шиповника» из-за их внешнего вида. Вокруг тела каждой такой клетки аксоны (отростки, через которые проходят нервные импульсы) образуют плотный пучок, и этот клубок напоминает розу с опавшими лепестками.

Оказалось, что «нейроны шиповника» относятся к классу ингибирующих нейронов, которые тормозят активность других клеток в головном мозге. Они составляют около 10-15% от общего числа «тормозящих нейронов».

Конкретная функция этого типа клеток пока не до конца понятна, но есть предположение, что они могут специфическим образом контролировать сигналы, передающиеся от других клеток, а именно, пирамидальных нейронов.

Примечательно, что у мышей и других модельных животных, которые используются в лабораторных исследованиях, подобных клеток специалисты не нашли. Это может объяснить, почему многие методы лечения заболеваний и нарушений работы мозга оказываются не столь эффективными, когда дело доходит до клинических испытаний.

Можно ли удалить часть мозга без последствий?

Американские нейробиологи описали необычный случай из своей практики. Четыре года назад семилетнему мальчику, которого специалисты назвали U.D., удалили треть правого полушария мозга, чтобы облегчить эпилептические припадки. Пациент среди прочего лишился правой части затылочной доли и большей части правой височной доли. Первая отвечает за восприятие зрительной информации, вторая обрабатывает слуховую информацию и способствует пониманию языка.

Спустя четыре года исследователи обнаружили, что мозг юного пациента почти полностью восстановил свои функции. Левое полушарие взяло на себя визуальные задачи (такие как распознавание лиц и объектов), которые должны были выполняться недостающими частями правого полушария. Кроме того, интеллект и когнитивные способности U.D. после операции развиваются на уровнях выше среднего (как и до вмешательства), а языковые и зрительные навыки соответствуют возрасту.

Единственное важное изменение заключается в том, что у пациента сузилась поле обзора: слева появилось «слепое пятно», и ему приходится поворачивать голову, чтобы увидеть объекты по левую сторону от себя.

По словам нейробиологов, этот случай – яркий пример нейропластичности мозга. Пока не до конца понятно, каким образом мозг мальчика сумел «перестроить» свою работу, однако учёные связывают такую «гибкость» с юным возрастом пациента.

Человеческий мозг кишит бактериями

Долгое время считалось, что здоровый мозг не содержит микроорганизмов, а стало быть, их присутствие сигнализирует о каком-либо заболевании. Но теперь специалисты установили, что человеческий мозг имеет собственную микробиоту, а бактерии в её составе, вероятно, безвредны.

Изучая ткани мозга скончавшихся пациентов (здоровых и страдавших от шизофрении), исследователи заметили странные структуры в форме палочек. Оказалось, что это микроорганизмы.

Секвенирование РНК показало, что большинство найденных бактерий относится к трём типам, причём все они также входят в состав кишечной микробиоты людей.

Любопытно, что в одних участках мозга (гиппокампе, префронтальной коре и чёрном веществе) этих бактерий было больше, чем в других. Кроме того, микроорганизмы были обнаружены в астроцитах – клетках мозга, которые располагаются вблизи гемато-энцефалического барьера. Это «пограничная зона» между кровеносной системой и центральной нервной системой.

Возможно, бактерии попадают в мозг по кровеносным сосудам, перемещаются по нервам из кишечника или же проникают в мозг через носовую полость.

Поскольку в изученных здоровых тканях отсутствовали признаки воспаления, учёные предположили, что микроорганизмы не причиняют вреда мозгу. Подтвердить или опровергнуть это помогут дальнейшие исследования.

«Магнитный» мозг

Человеческий мозг содержит частицы, которые могут намагничиваться. Об этом известно с 1990-х годов, но до сих пор исследователи не могли установить происхождение таких частиц.

В ходе новой работы нейробиологи из Германии, изучавшие ткани мозга семи скончавшихся пациентов, получили новые данные о загадочных частицах. Выяснилось, что во всех случаях они распределяются по мозгу одинаково, скапливаясь в одних и тех же участках, а именно, в мозжечке и стволе мозга. Это наиболее «эволюционно древние» области.

Также было показано, что в большинстве других частей мозга присутствуют те же частицы, но в меньших количествах.

Исследователи полагают, что магнитные частицы не являются следами загрязнения окружающей среды, поскольку тогда у разных людей их количество и распределение должны были бы отличаться. Более вероятно, что эти частицы нужны организму для каких-то «биологических целей», заявили исследователи.

Отмечается, что у многих животных в мозге также присутствуют магнитные частицы, и, вероятно, они связаны с навигацией. Более того, известно, что некоторые бактерии способны к магнитотаксису – движению, связанному с реакцией клетки на магнитное поле. Такие бактерии мигрируют вдоль линий магнитного поля Земли.

Сейчас учёные пытаются установить, каковы функции частиц, найденных в мозге человека, и к какому конкретному типу они относятся. Есть предположение, что они представляют собой соединение под названием магнетит (Fe3O4).

Ген древнего вируса одарил людей «мышлением высшего порядка»

От 40 до 80% человеческого генома состоит из генов, оставленных нам в наследство вирусами после множественных «вторжений». И, как недавно выяснилось, один из таких вирусов наградил людей особым геном под названием Arc.

Было установлено, что фрагменты древней вирусной ДНК играют важнейшую роль в коммуникации между клетками, которая необходима для «мышления высшего порядка», присущего людям.

В частности, вирусный ген Arc обеспечивает «упаковку» генетической информации и её передачу от одного нейрона другому. Также этот ген помогает клеткам перестраиваться с течением времени. А вот сбои в его работе чреваты неврологическими нарушениями и аутизмом.

Читайте также:  Какие продукты помогают мозгу работать

Молодые клетки старого мозга

Человеческий организм постоянно производит новые клетки и избавляется от старых. Однако ранее считалось, что такой «клеткооборот» не происходит в стареющем мозге.

В 2018 году учёные опровергли эту версию, представив убедительные доказательства того, что «пожилой» мозг на самом деле способен создавать новые клетки.

Изучив ткани мозга 28 пациентов, скончавшихся в возрасте от 14 до 79 лет, исследователи обнаружили в тканях «старых» и «молодых» образцов примерно одинаковое количество новых, ещё не полностью созревших клеток. В частности, такие клетки были найдены в гиппокампе – участке, отвечающем за обучение, память и формирование эмоций.

Также специалисты заметили, что в «пожилом» мозге присутствует меньше новых кровеносных сосудов и связей между клетками, что объясняет возрастные изменения.

Кстати, эта работа опровергла выводы другой, опубликованной буквально на месяц раньше. В ней учёные сообщали, что в зрелом возрасте гиппокамп не создаёт новых клеток. Такое расхождение данных может объясняться тем, что в более ранней работе рассматривались образцы тканей, собранные у людей с различными заболеваниями, включая эпилепсию. Кроме того, на результаты подобных исследований могут влиять способы консервации и хранения тканей.

Мозг «съёживается» во время стресса

Плохая новость для людей, которые постоянно испытывают стресс: из-за такого состояния может уменьшаться объём мозга.

Сравнивая данные более двух тысяч здоровых людей среднего возраста, исследователи из США обнаружили, что у пациентов с более высоким уровнем «гормона стресса» кортизола объём мозга, как правило, чуть меньше, чем у людей с нормальным количеством этого гормона. Более того, тесты показали, что у людей в состоянии стресса ухудшается память.

Авторы работы уточняют, что на данном этапе лишь отследили взаимосвязь, о причинах и последствиях говорить пока рано.

Впрочем, все эти открытия – ещё одна причина оградить себя от стресса. Для этого эксперты советуют наладить режим сна, отомстить кукле вуду своего босса или удалиться из социальных сетей.

«Шумовой фильтр» мозга

Если бы каждый наш шаг отдавался в голове, люди, вероятно, давно сошли бы с ума от бесконечного «топ-топ-топ». Но, к счастью, наш мозг обладает «настройками шумоизоляции».

Открытие было сделано в ходе изучения мозга мышей. Оказалось, орган создаёт своего рода шумовой фильтр, привыкая к определённым звукам вроде шагов. Происходит это благодаря особым «сцеплениям» клеток моторной коры и слуховой коры мозга. Первая отвечает за планирование и выполнение движений, вторая – за восприятие звуков.

Клетки моторной коры передают клеткам слуховой коры команду блокировать собственные сигналы. Таким образом в отдельных случаях восприятие звука как бы приглушается.

Учёные полагают, что такой «шумовой фильтр» необходим животным для защиты: не отвлекаясь на звук собственных движений, они могут услышать приближение хищника.

Авторы работы уверены, что мозг людей также способен создавать подобную «шумоизоляцию». Аналогичные механизмы, к слову, уже были описаны ранее. К примеру, мозг спортсменов «отключает» защитные рефлексы, которые в противном случае не позволили бы телу выполнить опасные движения (вроде головокружительных вращений фигуристов).

Нейробиологи не исключают, что нарушения работы «шумового фильтра» могут быть связаны с различными симптомами психических заболеваний, например, слуховыми галлюцинациями при шизофрении.

Психоактивные вещества могут менять структуру нейронов

Исследуя клетки мозга, выращенные в лабораторных условиях, а также образцы тканей мозга животных, учёные установили, что психоделики могут изменять структуру нейронов. Если аналогичные процессы происходят у людей, это может означать, что такие вещества потенциально могут помочь в лечении пациентов с определёнными нарушениями.

Дело в том, что у людей с депрессией, тревожным расстройством и схожими недугами нейроны префронтальной коры, которая связана с контролем эмоций, уменьшаются (как бы съёживаются). Снижается и количество нейронных отростков – дендритов, а также синапсов – контактов между нейронами.

Когда исследователи добавляли в чашки Петри, содержащие клетки мозга, психоактивные вещества (в том числе ЛСД и МДМА), они увидели, что количество дендритов и синапсов между ними увеличивалось. Также возрастало число дендритных шипиков – отростков, которые образуют синаптические соединения.

Такие результаты, конечно, не говорят о том, что при любых признаках депрессии нужно принимать психоделики. Однако принцип их действия может стать основой для создания новых терапевтических стратегий.

«Второй мозг» в кишечнике

Исследователи впервые описали действие нейронов так называемого второго мозга млекопитающих, который расположен… в кишечнике. Речь идёт об энтеральной нервной системе (ЭНС), которая состоит из сети нейронов и регулирует работу гладких мышц внутренних органов, обладающих сократительной активностью.

Примечательно, что это происходит без каких-либо инструкций со стороны «фактического» мозга. Хотя нейроны кишечника связаны с нейронами центральной нервной системы, ЭНС всё-таки действует автономно. И это единственный внутренний орган, который имеет такие способности.

Исследования «второго мозга» мышей показали, что он довольно «умён». По словам учёных, они зафиксировали всплески активности нейронов ЭНС, которые имеют чёткую ритмику. Популяция «кишечных» нейронов запускает работу миллионов клеток гладких мышц, причём их сокращение имеет ту же самую частоту, что и всплески нейронной активности.

Отметим, что до этого не было известно, как нейроны ЭНС обеспечивают ритмичные сокращения кишечника. Поэтому авторы работы полагают, что новые данные можно будет использовать как контрольный шаблон, чтобы выявлять дисфункции кишечника и изучать их модели.

Новый участок мозга

Редакция проекта «Вести.Наука» (nauka.vesti.ru) предлагает вспомнить ещё об одном важном открытии в области нейробиологии, а именно, об обнаружении нового участка человеческого мозга.

Эндорестиформное ядро – так австралийские исследователи назвали недавно открытую крошечную область. Она располагается в нижней мозжечковой ножке, которая объединяет сенсорную и моторную информацию, контролируя нашу осанку, равновесие и мелкую моторику. Специалисты предполагают, что эндорестиформное ядро может быть вовлечено в контроль мелкой моторики.

Примечательно, что другие млекопитающие, в том числе нечеловекообразные приматы, лишены этого участка мозга. В ближайшее время специалисты намерены подробнее изучить мозг шимпанзе, чтобы узнать, имеют ли гоминиды эндорестиформное ядро. Хотя нейробиологи признаются, что сомневаются в этом и считают открытый участок мозга уникальным для людей.

Ожидается, что дальнейшее изучение нового участка мозга – его функций и их нарушений – поможет создать новые стратегии лечения и препараты от множества заболеваний, включая болезнь Паркинсона и боковой амиотрофический склероз (болезнь моторных нейронов).

Читайте также:
Adblock
detector