Подкорковые структуры головного мозга

Подкорковые функции, совокупность физиологических процессов, связанных с деятельностью отдельныхподкорковых структур мозга или с их системой. С анатомической точки зрения к подкорковым относят все ганглионарные образования, лежащие между корой больших полушарий головного мозга и продолговатым мозгом. Однако в функциональном отношении термином «П. ф.» было принято обозначать функции «ближайшей подкорки» (И. П. Павлов), которая имеет более тесные связи с корой больших полушарий и включает в себя подкорковые образования, лежащие между корой и четверохолмием (таламус, гипоталамус, хвостатое тело, бледный шар и др.). Впоследствии в связи с разработкой физиологии ретикулярных формаций таламуса и ствола было показано, что эти образования имеют непосредственное отношение к функциям коры больших полушарий и связаны с ней сложными взаимоотношениями. Кора головного мозга, являясь главнейшим органом новых временных связей и интегратором сложнейших приспособлений к внешнему миру, может выполнять эту функцию только при условии, если она непрерывно получает из подкоркового аппарата генерализованные и локальные активирующие восходящие влияния. Устранение этих влияний немедленно разрушает тончайшую корковую интеграцию, возникает потеря сознания, переход в сонное состояние, обратимо исчезает способность коры больших полушарий осуществлять ассоциативную деятельность и т.п.

Учитывая это активирующее влияние подкорковых образований на кору головного мозга, Павлов считал, что «эмоции придают силу корковым клеткам» и что кора всё время находится под действием «слепой силы» подкорки. Все эти данные затрудняют отдельное рассмотрение как коры головного мозга, так и подкорковых образований. Однако, несмотря на указанную особенность корково-подкорковых соотношений, каждый из этих уровней нервной организации имеет совершенно специфические функциональные свойства, локализацию и вносит в конечную интегративную деятельность целого организма свою особую долю. Это обстоятельство оправдывает выделение физиологической характеристики подкорковых структур. См. также Гипоталамус, Зрительные бугры, Кортико-висцеральные отношения, Лимбическая система, Ретикулярная формация.

27) Возрастные изменения строения головного мозга.

Головной мозг новорожденных и дошкольников короче и шире, чем у школьников и взрослых. До 4 лет происходит почти равномерный рост мозга в длину, ширину и высоту, а с 4 до 7 лет особенно интенсивно увеличивается его высота. Отдельные доли мозга растут неравномерно: лобная и теменная доли растут быстрее височной и особенно затылочной. Средний абсолютный вес головного мозга у мальчиков и девочек составляет соответственно (в граммах):

у новорожденных – 391 и 388;

в 2 года – 1011 и 896;

в 3 года – 1080 и 1068;

В 5 лет – 1154 и 1168,

В 9 – 1270 и 1236.

К 7 годам вес мозга соответствует 4/5 веса мозга у взрослых. После 9 лет вес головного мозга прибавляется медленно, к 20 годам он достигает уровня взрослых, а наибольший вес мозг имеет в 20–30 лет.

Индивидуальные колебания веса мозга составляют 40–60 %. Это обусловливается вариациями веса тела у взрослых. В период от рождения до взрослого состояния вес головного мозга увеличивается примерно в четыре раза, а вес тела – в 20 раз. На долю больших полушарий приходится 80 % от общего веса головного мозга. С возрастом изменяется соотношение между количеством нейронов и количеством клеток глии: относительное количество нейронов уменьшается, а относительное количество клеток глии возрастает. Кроме того, изменяются и химический состав головного мозга, и содержание в нем воды. Так, в головном мозге новорожденного вода составляет 91,5 %, восьмилетнего ребенка – 86,0 %. Головной мозг взрослых отличается от головного мозга детей и обменом веществ: он в два раза меньше. В возрасте от 15 до 20 лет увеличивается просвет кровеносных сосудов головного мозга.

Читайте также:  Жидкость в головном мозге у взрослого

Количество спинно-мозговой жидкости у новорожденных меньше, чем у взрослых (40–60 г), а содержание белков – больше. В дальнейшем, с 8-10 лет количество спинно-мозговой жидкости у детей почти одинаковое со взрослыми, а количество белков уже с 6-12 месяцев развития больших полушарий у детей соответствует уровню взрослых. Развитие нейронов в больших полушариях предшествует появлению борозд и извилин. В первые месяцы жизни они есть и в сером, и в белом веществе. Строение нейронов трехлетнего ребенка не отличается от нейронов взрослого, однако усложнение их строения происходит до 40 лет. Количество нейронов при рождении примерно такое же, как у взрослых, после рождения появляется лишь небольшое число новых высокодифференцированных нейронов, а малодифференцированные нейроны продолжают делиться.

Уже в начале четвертого месяца внутриутробной жизни большие полушария покрывают зрительные бугры, в этот период на их поверхности есть только одно вдавление – будущая сильвиева борозда. Бывают случаи, когда у трехмесячного плода имеются теменно-затылочные и шпорная борозды. У пятимесячного зародыша есть сильвиева, теменно-затылочная, мозолистокраевая и центральная борозды. Шестимесячный зародыш имеет все главные борозды. Вторичные борозды появляются после 6 месяцев внутриутробной жизни, третичные борозды – в конце внутриутробной жизни. К концу седьмого месяца внутриутробного развития большие полушария покрывают весь мозжечок. Асимметрия в строении борозд в обоих полушариях наблюдается уже в начале их закладки и сохраняется в течение всего периода развития головного мозга.

У новорожденных есть все первичные, вторичные и третичные борозды, но они продолжают развиваться и после рождения, особенно до 1–2 лет. К 7-12 годам борозды и извилины имеют такой же вид, как у взрослого человека.

Еще во внутриутробный период жизни у детей формируются моторная и кожно-мышечная чувствительность, а затем почти одновременно – зрительная и слуховая. Раньше всех созревает часть премоторной зоны, которая регулирует двигательную и секреторную функции внутренних органов.

Развитие ствола головного мозга, мозжечка и лимбической доли. Образования мозгового ствола развиваются неравномерно, до рождения в них преобладает серое вещество, после рождения – белое. В первые два года жизни в связи с развитием автоматических движений сагиттальный размер хвостатого тела и чечевицеобразного ядра увеличивается в два раза, фронтальный размер зрительного бугра и чечевицеобразного ядра – в три раза, хвостатого ядра – в два раза. У новорожденного объем подкорковых образований менторной зоны (сюда входят хвостатое тело, скорлупа, безымянная субстанция, бледный шар, льюисово тело, красное ядро, черная субстанция) составляет по отношению к взрослому 19–40 %, а у ребенка 7 лет – 94–98 %.

Читайте также:  Агенезия мозолистого тела у плода

Не нашли то, что искали? Воспользуйтесь поиском:

Отключите adBlock!
и обновите страницу (F5)
очень нужно

Передний мозг состоит из подкорковых (базальных) ядер и коры больших полушарий. Подкорковые ядра входят в состав серого вещества больших полушарий и состоят из полосатого тела, бледного шара, скорлупы, ограды, субталамического ядра и черной субстанции. Подкорковые ядра — это связующее звено между корой и стволом мозга. К базальным ядрам подходят афферентные и эфферентные пути.

Функционально базальные ядра являются надстройкой над красными ядрами среднего мозга и обеспечивают пластический тонус, т.е. способность удерживать длительное время врожденную или выученную позу. Например, поза кошки, которая стережет мышь, или длительное удержание позы балериной, выполняющей какое-либо па.

Подкорковые ядра позволяют осуществлять медленные, стереотипные, рассчитанные движения, а их центры — регуляцию мышечного тонуса.

Нарушение различных структур подкорковых ядер сопровождается многочисленными двигательными и тоническими сдвигами. Так, у новорожденного, неполное созревание базальных ядер (особенно бледного шара) приводит к резким судорожным сгибательным движениям.

Нарушение функции полосатого тела ведет к заболеванию — хорее, сопровождающееся непроизвольными движениями, значительными изменениями позы. При расстройстве полосатого тела нарушается речь, возникают затруднения в повороте головы и глаз в сторону звука, происходит потеря словарного запаса, прекращается произвольное дыхание.

Подкорковым функциям принадлежит важная роль в переработке информации, поступающей в головной мозг из внешней среды и внутренней среды организма. Этот процесс обеспечивается деятельностью подкорковых центров зрения и слуха (латеральные, медиальные, коленчатые тела), первичных центров по переработке тактильной, болевой, протопатической, температурной и других видов чувствительности — специфические и неспецифические ядра таламуса. Особое место среди П. ф. занимают регуляция сна и бодрствования, активность гипоталамо-гипофизарной системы, которая обеспечивает нормальное физиологическое состояние организма, гомеостаз. Важная роль принадлежит П. ф. в проявлении основных биологических мотиваций организма, таких как пищевые, половые. П. ф. реализуются путем эмоционально окрашенных форм поведения; большое клинико-физиологическое значение имеют П. ф. в механизмах проявления судорожных (эпилептиформных) реакций различного происхождения. Таким образом, П. ф. являются физиологической основой деятельности всего мозга. В свою очередь, П. ф. находятся под постоянным модулирующим влиянием высших уровней корковой интеграции и психической сферы.

Базальные ядра развиваются быстрее, чем зрительные бугры. Миелинизация структур БЯ начинается еще в эмбриональном периоде, а заканчивается к первому году жизни. Двигательная активность новорожденного зависит от функционирования бледного шара. Импульсы от него вызывают общие нескоординированные движения головы, туловища, конечностей. У новрожденного БЯ связаны со зрительными буграми, гипоталамусом и черной субстанцией. При развитии полосатого тела у ребенка появляются мимические движения, а затем умения сидеть и стоять. В 10 месяцев ребенок может свободно стоять. По мере развития базальных ядер и коры головного мозга движения становятся более координированными. К концу дошкольного возраста устанавливается равновесие корково-подкорковых двигательных механизмов.

Читайте также:  Потеря сознания при месячных причины

«Подкорковые структуры мозга» в книгах

2. СТРУКТУРЫ МОЗГА, РЕАЛИЗУЮЩИЕ ПОДКРЕПЛЯЮЩУЮ, ПЕРЕКЛЮЧАЮЩУЮ, КОМПЕНСАТОРНО-ЗАМЕЩАЮЩУЮ И КОММУНИКАТИВНУЮ ФУНКЦИИ ЭМОЦИЙ Результаты нейрофизиологических экспериментов показывают, что потребности, мотивации и эмоции имеют различный морфологический субстрат. Так, при

8. ПРОЕКЦИЯ ИНДИВИДУАЛЬНОГО ОПЫТА НА СТРУКТУРЫ МОЗГА В НОРМЕ И ПАТОЛОГИИ 8.1. Зависимость проекции индивидуального опыта от особенностей индивидуального развития Из всего сказанного ранее с очевидностью следует, что с позиций системной психофизиологии проблема

2. СТРУКТУРЫ МОЗГА, РЕАЛИЗУЮЩИЕ ПОДКРЕПЛЯЮЩУЮ, ПЕРЕКЛЮЧАЮЩУЮ, КОМПЕНСАТОРНО-ЗАМЕЩАЮЩУЮ И КОММУНИКАТИВНУЮ ФУНКЦИИ ЭМОЦИЙ Результаты нейрофизиологических экспериментов показывают, что потребности, мотивации и эмоции имеют различный морфологический субстрат. Так, при

8. ПРОЕКЦИЯ ИНДИВИДУАЛЬНОГО ОПЫТА НА СТРУКТУРЫ МОЗГА В НОРМЕ И ПАТОЛОГИИ 8.1. Зависимость проекции индивидуального опыта от особенностей индивидуального развития Из всего сказанного ранее с очевидностью следует, что с позиций системной психофизиологии проблема

Глубинные структуры мозга Какую же структуру имеет наш мозг? Мы не будем углубляться в тонкости анатомии и физиологии, ведь для того, чтобы понять основные принципы работы мозга, не обязательно знать, где именно находятся и какие функции выполняют сосцевидные тела или

1.3. Методология исследования элементов структуры техники и анализ параметров структуры прогресса Проблема открытия, рационализации, изобретения как форм умственной деятельности интеллектуальных систем (И.С. Ладенко), лейтмотивом функционального поведения которых

2. Межпредельные, или внутрипредельные, то есть промежуточные, структуры, или структуры в собственном смысле слова Ясно, что такого рода структуры как раз и являются теми структурами, как они обычно понимаются. Однако здесь должна быть соблюдаема та античная специфика,

ГЛАВА 5 ПОДКОРКОВЫЕ УЗЛЫ (ЯДРА) Помимо коры, образующей поверхностные слои конечного мозга, скопления серого вещества в полушариях большого мозга присутствуют в виде отдельных ядер, или узлов. Эти узлы находятся в толще белого вещества, ближе к основанию мозга. Скопления

Глава 29 ПСИХИЧЕСКИЕ РАССТРОЙСТВА ПРИ СИФИЛИТИЧЕСКОМ ПОРАЖЕНИИ МОЗГА (СИФИЛИС МОЗГА И ПРОГРЕССИВНЫЙ ПАРАЛИЧ) Сифилитическая инфекция, как известно, поражает все органы и ткани, в том числе и головной мозг. В клинической психиатрии традиционно различают два отдельных

Меридианы головного мозга (перикарда) и спинного мозга (тройного обогревателя) Тот, кто более или менее знаком с литературой по китайской традиционной медицине, наверное, сразу обратил внимание на некоторое несоответствие в названиях данных меридианов. Дело в том, что в

Концентрация внимания для изменения структуры мозга Возможно, вы задаетесь вопросом, как метод лечения, подразумевающий еще большую сосредоточенность на внутреннем мире, поможет человеку, уже измученному тревогой и навязчивыми идеями. Вдруг Сэнди нужно просто жить

Читайте также:
Adblock
detector