Ретикулярная формация и ее нисходящее влияние на спинной мозг

1.Ретикулярная формация — совокупность нейронов отростки которых образуют своеобразную сеть в пределах центральной нервной системы.Ретикулярная формация открыта Дейтерсом, изучалась В. Бехтеревым, обнаружена в стволе мозга и спинном мозге. Основную роль выполняет ретикулярная формация ствола мозга. Ретикулярная формация занимает центральную часть на уровне продолговатого мозга, варолиевого моста, среднего и промежуточного мозга. Нейроны ретикулярной формации — клетки разнообразной формы, они имеют длинные ветвящиеся аксоны и длинные неветвящиеся дендриты. Дендриты образуют синапсы на нервных клетках. Некоторые дендриты выходят за пределы ствола мозга и доходят до поясничного отдела спинного мозга — они образуют нисходящий ретикулоспинальный путь.

Ретикулярная формация имеет связи с различными отделами центральной нервной системы: в ретикулярную формацию поступают импульсы от различных афферентных нейронов. Они поступают по коллатералям других проводящих путей. Ретикулярная формация не имеет непосредственных контактов с афферентной системой; ретикулярная формация имеет 2-х сторонние связи с нейронами спинного мозга — в основном с мотонейронами; с образованиями ствола мозга (с промежуточным и средним мозгом); с мозжечком, с подкорковыми ядрами (базальными ганглиями), с корой больших полушарий.

В ретикулярной формации ствола мозга различают 2 отдела:

1)растральный — ретикулярная формация на уровне промежуточного мозга;

2)каудальный — ретикулярная формация продолговатого мозга, моста и среднего мозга.

Изучены 48 пар ядер ретикулярной формации.

2.Функции ретикулярной формации изучены в 40-е гг. XX века Мэгуном и Моруции. Они проводили опыты на кошках, помещая электроды в различные ядра ретикулярной формации.

Ретикулярная формация обладает нисходящим и восходящим влиянием.

Нисходящее влияние — на нейроны спинного мозга. Оно (влияние) может быть активирующим и тормозным.

Восходящее влияние — на нейроны коры головного мозга — тоже тормозное и активизирующее. За счет особенности своих нейронов ретикулярная формация способна изменять функциональное состояние нейронов центральной нервной системы.

Особенности нейронов ретикулярной формации:

постоянная спонтанная электрическая активность — обеспечивается гуморальным влиянием и влиянием вышележащих отделов центральной нервной системы. Эта активность не имеет рефлекторного происхождения;

явление конвергенции — к ретикулярной формации идут импульсы по коллатералям различных проводящих путей. Сходясь к телам одних и тех же нейронов импульсы теряют свою специфичность; импульсы, поступая к нейронам ретикулярной формации, изменяют ее функциональную активность — если нейроны обладают выраженной электрической активностью, то под влиянием афферентных импульсов электрическая активность уменьшается и наоборот, т. е. модулируется активность нейронов ретикулярной формации; у нейронов ретикулярной формации низкий порог раздражения и, как следствие, высокая возбудимость; у нейронов ретикулярной формации высокая чувствительность к действию гуморальных факторов: биологически активных веществ, гормонов (адреналина), избытку СО2, недостатку О2 и т. д.;

в состав ретикулярной формации входят нейроны с различными медиаторами: адренэргические, холин-, серотонин-, дофаминэргические.

Нейрон — это структурно-функциональная единица нервной системы.

Анатомо-гистологической единицей нервной системы является нейрон — нервная клетка и ее отростки.

1)центральные (расположены в центральной нервной системе);

2)периферические (расположены вне центральной нервной системы — в спинномозговых, черепно-мозговых ганглиях, в вегетативных ганглиях, в сплетениях и внутриорганно).

По функциональному признаку:

1)рецепторные (афферентные, чувствительные) — это те нервные клетки, по которым импульсы идут от рецепторов в центральную нервную систему. Они делятся на:

2)первичные афферентные нейроны — их тела расположены в спинальных ганглиях, они имеют непосредственную связь с рецепторами;

3)вторичные афферентные нейроны — их тела лежат в зрительных буграх, они передают импульсы в вышележащие отделы, они не связаны с рецепторами, получают импульсы от других нейронов;

4)эфферентные нейроны передают импульсы из центральной нервной системы к другим органам. Мотонейроны расположены в передних рогах спинного мозга (альфа, бетта, гамма — мотонейроны) — обеспечивают двигательную ответную реакцию. Нейроны вегетативной нервной системы: преганглионарные (их тела лежат в боковых рогах спинного мозга), постганглионарные (их тела — в вегетативных ганглиях);

5)вставочные (интернейроны) — обеспечивают передачу импульсов с афферентных на эфферентные нейроны. Они составляют основную массу серого вещества головного мозга, 6)широко представлены в головном мозге и его коре. Виды вставочных нейронов: возбуждающие и тормозящие нейроны.

Читайте также:  Сколько весит мозг слона

Нейрон состоит из тела, аксона, дендритов.

Тело нейрона — содержит все компоненты клеточных структур и способно генерировать нервные импульсы и выполнять трофическую функцию. В месте отхождения аксона — участок безмиелинового волокна (около 50-100 нм) — это начальный сегмент. Именно здесь — самая высокая активность (уровень возбудимости) — это тригерная зона, здесь разность между мембранным потенциалом и Ек равна 7-10 мВ.

Аксон — это длинный отросток, несущий импульсы от тела нервной клетки. Может быть миелиновым и безмиелиновым и заканчивается различными синапсами.

Дендриты — это короткие, сильноветвящиеся отростки — ведут импульсы к телу нейрона — обеспечивают взаимодействие между нейронами центральной нервной системы.

Размеры нейронов: диаметр от 4-6 мкм до 130 мкм. Мембранный потенциал — 50-90 мВ; амплитуда потенциала действия 80-120 мВ. Мембрана нейрона в покое обладает высокой проницаемостью для К+, при возбуждении — для Nа+ и Са2+.

опорная (препятствует деформации нейронов); трофическая (регулирует обменные процессы в нервной ткани); регуляция ионного состава (концентрация ионов по обе стороны мембраны); регуляция кровоснабжения центральной нервной системы.

Особенности центральных нейронов

Центральные нейроны имеют свои особенности.

Способность к спонтанной деполяризации — самопроизвольная генерация нервных импульсов. Причина — нейроны образуют сложные замкнутые цепи в пределах центральной нервной системы, где происходит спонтанное выделение медиатора.

Длительный период следовой гиперполяризации. После возникновения возбуждения нейроны длительное время находятся в состоянии пониженной возбудимости и как следствие этого, низкая лабильность.

Вставочные нейроны имеют небольшой период следовой гиперполяризации и как следствие этого возрастает лабильность до 1000 имп/с. Мотонейроны имеют более длительный период следовой гиперполяризации, поэтому лабильность у них составляет у альфа-мотонейронов — 500 имп/с, у гамма-мотонейронов — 50-100 имп/с.

Выделение различных медиаторов. В зависимости от вида медиаторов — 2 вида нервных клеток: холинэргические и адренэргические.

Вопрос 2 Физиологическая характеристика миокардиоцитов и миоцитов проводящей системы — мембранный потенциал, потенциал действия, изменение возбудимости при генерации ПД, рефрактерность, механизм, химизм и энергетика сокращения миокарда, проведение возбуждения по миокарду.

Энергетика. Сердечная мышца в основном способна работать лишь в условиях аэробного режима; благодаря наличию кислорода миокард использует различные субстраты окисления и преобразует их в цикле Кребса в энергию, аккумулированную в АТФ. Для нужд энергетики используются многие продукты обмена— глюкоза, свободные жирные кислоты, аминокислоты, пируват, лактат, кетоновые тела. Так, в условиях покоя (обычной нагрузки) на нужды энергетики сердца тратится глюкозы — 31%, лактата — 28%, свободных жирных кислот — 34%, пирувата, кетоновых тел и аминокислот — 7%.

При физической нагрузке существенно возрастает потребление лактата и жирных кис лот, а потребление глюкозы — снижается. Это важное наблюдение свидетельствует о том, что сердце является удивительным органом — оно способно утилизировать те кислые продукты, которые накапливаются в скелетных мышцах при их интенсивной работе, в том числе в анаэробных условиях. Следовательно, сердце выступает и в роли буфера, предохрани ющего организм от закисления среды. :

За 1 минуту сердце массой 300 г потребляет в среднем 24—30 мл кислорода, что составляет около 10% от общего потребления кислорода. В норме коэффициент полезного действия сердечной мышцы составляет 15—40%. За 1 систолу левый желудочек совершает работу, равную 0,93 Н*м, правый желудочек — 0,14 Н*м, а вместе — 1,089 Н*м (Ш — 0,1 кг).

Процессы сокращения в миокардиоцитах. Кардиомиоциты имеют диаметр 10—15 мкм, а их длина — 30—60 мкм. Каждый кардиомиоцит содержит много, миофибрилл, а каждая миофибрилла состоит из 200—1000 протофибрилл — актиновых и миозиновых нитей. С поверхности миокардиоцита в глубь клетки уходит Т-образное выпячивание (Г-система), которое внутри клетки контактирует с цистернами саркоплазматического ретикулюма.

Инициация сокращения происходит под влиянием кальция: он взаимодействует с тропонином. Это меняет положение тропомиозина на актиновой нити, с которыми миозиыовые мостики способны вступать в контакт. Далее начинается мостиковый цикл — взаимодействие, тяга, отщепление под влиянием гидролиза АТФ и новый цикл. Чем больше ионов кальция— тем больше число взаимодействующих мостиков и тем выше сила сокращения.

Читайте также:  Влияние наркоза на деятельность мозга

Кальций для нужд сокращения поступает из нескольких источников:

—из цистерн саркоплазматического ретикулюма;

—из митохондрий, где он накапливается в период диастолы;

—из наружной среды (в момент генерации ПД кальций через медленные натрийкаль циевые каналы входит внутрь миокардиоцита).

ВОЗБУДИМОСТЬ СЕРДЕЧНОЙ МЫШЦЫ

1.Операторский труд. Это труд профессиональных групп, связанный с управлением автоматизированными системами (операторы технологических установок, авиадиспетчеры и т.д.).

Целевое назначение системы оказывает определяющее влияние на многие ее характеристики и поэтому является исходным признаком. По целевому назначению можно выделить следующие классы систем:

а) управляющие, в которых основной задачей человека является управление машиной (или комплексом);

б) обслуживающие, в которых человек контролирует состояние машинной системы, ищет неисправности, производит наладку, настройку, ремонт и т.п.;

в) обучающие, т. е. вырабатывающие у человека определенные навыки (технические средства обучения, тренажеры и т. п.);

г) информационные, обеспечивающие поиск, накопление или получение необходимой для человека информации (радиолокационные, телевизионные, документальные системы, системы радио и проводной связи и др.);

д) исследовательские, используемые при анализе тех или иных явлений, поиске новой информации, новых заданий (моделирующие установки, макеты, научноисследовательские приборы и установки).

Для ретикулярной формации стволовой части мозга характерны не только вегетативные регулирующие функции, но и участие в нисходящем контроле деятельности двигательных центров спинного мозга.

Нисходящие тормозные влияния ретикулярной формации на спинной мозг

Более ста лет назад в 1862 г. И. М. Сеченов установил факт угнетения всех спинальных рефлексов (сгибательных и разгибательных) при раздражении стволовой части мозга. Это было открытием центрального торможения и одновременно открытием ретикулоспинальной системы. Локальное электрическое раздражение гигантоклеточного ядра ретикулярной формации продолговатого мозга вызывает неспецифическое торможение сгибательных и разгибательных спинальных рефлексов. Эти неспецифические супраспинальные влияния по ретикулоспинальному тракту достигают мотонейронов спинного мозга и увеличивают порог и скрытый период их ответов на рефлекторные воздействия. Таким образом тормозятся структуры СМ.

В нисходящих путях от ретикулярной формации существуют 2 системы:

  • сгибательная (латеральный ретикулоспинальный путь). Возбуждаются сгибатели, тормозятся разгибатели.
  • разгибательная (медиальный ретикулоспинальный путь). Возбуждаются разгибатели, тормозятся сгибатели.

В ходе экспериментов с локальной стимуляцией ретикулярной формации выяснилось наличие зон, дающих эффект противоположной полярности, т. е. облегчающее влияние на спинно-мозговые рефлексы. Так, например, электрическое раздражение латеральных зон ретикулярной формации моста снижает порог и укорачивает скрытый период спинальных рефлексов.

Ретикулярная формация как один из двигательных центров стволовой части мозга может выступать не только в роли регулятора возбудимости спинальных мотонейронов, но и принимать участие в процессах, связанных с поддержанием позы и организацией целенаправленных движений.

Восходящие активирующие влияния ретикулярной формации на головной мозг

Если через хронически вживленные электроды раздражать центральные части ретикулярной формации ствола, то кошка, находящаяся в сонном состоянии, пробуждается и у нее появляется ориентировочная реакция. Эта поведенческая реакция пробуждения сопровождается характерными изменениями частотного спектра электроэнцефалограммы, переходом от регулярных, высоковольтных колебаний альфа-ритма к низковольтным колебаниям бета-ритма. Данная электроэнцефалографическая реакция получила название реакции десинхронизации. Она имеет генерализованный характер и регистрируется от обширных областей коры головного мозга.

В остром опыте перерезка стволовой части мозга на уровне среднего мозга и, таким образом, разрушение восходящих путей от ретикулярной формации ствола переводят животное в сноподобное коматозное состояние (спящий мозг, по Бремеру) с соответствующими изменениями характера электроэнцефалограммы.

В состав ретикулярной формации мозгового ствола входят не только структуры, при возбуждении которых животное просыпается и становится активным (настораживание, принюхивание и пр.), но и структуры, активация которых вызывает засыпание животного. Это ядра шва. В окончаниях своих аксонов (синапсах) нейроны этих ядер выделяют серотонин. В опытах на животных было показано, что локальное разрушение этих ядер приводит к хронической бессоннице животного, которая может заканчиваться смертью. Известно, что истощение серотонина мозга у человека также приводит к хронической бессоннице.

Читайте также:  Сколько мозг может без воздуха

Практически к ретикулярной формации приходит вся информация от всех органов чувств по коллатералям от спиноретикулярного тракта, проприоспинальных путей, афферентных черепно-мозговых нервов, от таламуса и гипоталамуса, от моторных и сенсорных областей коры.

Ретикулярная формация ствола мозга – скопление полиморфных нейронов по ходу ствола мозга.

Физиологическая особенность нейронов ретикулярной формации:

1) самопроизвольная биоэлектрическая активность. Ее причины – гуморальное раздражение (повышение уровня углекислого газа, биологически активных веществ);

2) достаточно высокая возбудимость нейронов;

3) высокая чувствительность к биологически активным веществам.

Ретикулярная формация имеет широкие двусторонние связи со всеми отделами нервной системы, по функциональному значению и морфологии делится на два отдела:

1) растральный (восходящий) отдел – ретикулярная формация промежуточного мозга;

2) каудальный (нисходящий) – ретикулярная формация заднего, среднего мозга, моста.

Физиологическая роль ретикулярной формации – активация и торможение структур мозга.

Влияния РФ можно разделить в целом на нисходящие и восходящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.

Восходящие влияния РФ на кору большого мозга повышают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на функциональное состояние всех сенсорных областей мозга, следовательно, она имеет значение в интеграции сенсорной информации от разных анализаторов.

РФ имеет прямое отношение к регуляции цикла бодрствование—сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга.

Возбуждение РФ продолговатого мозга или моста вызывает синхронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение.

Возбуждение РФ среднего мозга вызывает противоположный эффект пробуждения: десинхронизацию электрической активности коры, появление быстрых низкоамплитудных β-подобных ритмов в электроэнцефалограмме.

Г. Бремер (1935) показал, что если перерезать мозг между передними и задними буграми четверохолмия, то животное перестает реагировать на все виды сигналов; если же перерезку произвести между продолговатым и средним мозгом (при этом РФ сохраняет связь с передним мозгом), то животное реагирует на свет, звук и другие сигналы. Следовательно, поддержание активного анализирующего состояния мозга возможно при сохранении связи с передним мозгом.

Реакция активации коры большого мозга наблюдается при раздражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к возникновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ.

РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга.

Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И. М. Сеченовым (1862). Им было показано, что при раздражении среднего мозга кристалликами соли у лягушки рефлексы отдергивания лапки возникают медленно, требуют более сильного раздражения или не появляются вообще, т. е. тормозятся.

Г. Мэгун (1945—1950), нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках продолговатого мозга эти же рефлексы вызывались легче, были сильнее, т. е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и СМ

Читайте также:
Adblock
detector