Зрительные нервы передающие возбуждение в головной мозг

Глаз обладает способностью видеть и при очень ярком солнечном свете, и почти в полной темноте, сводя воедино миллионы световых сигналов. Он различает огромное количество цветовых оттенков, а при помощи второго глаза может оценивать положение предмета в пространстве, его объём и конфигурацию. Однако если быть абсолютно точным, все эти замечательные свойства присущи не собственно глазу как органу зрения, а зрительному анализатору, особенно его корковому отделу, расположенному в головном мозгу.

1.1. Анатомия и физиология зрительного анализатора

Функция зрения осуществляется благодаря сложной системе различных взаимосвязанных структур, образующих зрительный анализатор, который состоит из трёх отделов:

§ периферического – рецепторы сетчатой оболочки глаза;

§ проводникового – зрительные нервы, передающие возбуждение в головной мозг;

§ центрального – подкорковые и стволовые центры (латеральные коленчатые тела, подушка таламуса, верхние холмики крыши среднего мозга), а также зрительная область в затылочной доле коры больших полушарий головного мозга.

Анатомическим образованием сенсорной зрительной системы, по сути, её периферическим отделом, является глаз – парное, почти сферическое образование диаметром 24 мм и весом 6–8 г, расположенное в глазницах черепа (рис. 1). Глаз укреплен здесь при помощи четырех прямых и двух косых мышц, управляющих его движениями. Форма глаза поддерживается за счет гидростатического давления (25 мм рт. ст.) водянистой влаги и стекловидного тела.

Световые раздражения воспринимаются палочками и колбочками сетчатки.Прежде чем достигнуть сетчатки, лучи света проходят через светопреломляющие среды глаза. При этом на сетчатке получается действительное обратное уменьшенное изображение. Несмотря на перевернутость изображения предметов на сетчатке, вследствие переработки информации в коре головного мозга человек воспринимает их в естественном положении,к тому же зрительные ощущения всегда дополняются и согласуются показаниями других анализаторов.Функция зрения осуществляется благодаря сложной системе различных взаимосвязанных структур, образующих зрительный анализатор, который состоит из трёх отделов:

— периферического – рецепторы сетчатой оболочки глаза;

— проводникового – зрительные нервы, передающие возбуждение в головной мозг;

— центрального – подкорковые и стволовые центры (латеральные коленчатые тела, подушка таламуса, верхние холмики крыши среднего мозга), а также зрительная область в затылочной доле коры больших полушарий головного мозга.

Рис.12.Проводящие пути зрительного анализатора.
1 — Левая половина зрительного поля, 2 — Правая половина зрительного поля, 3 — Глаз, 4 — Сетчатка, 5 — Зрительные нервы, 6 — Глазодвигательный нерв, 7 — Хиазма, 8 — Зрительный тракт, 9 — Латеральное коленчатое тело, 10 — Верхние бугры четверохолмия, 11 — Неспецифический зрительный путь, 12 — Зрительная кора головного мозга.

Способность хрусталика изменять свою кривизну в зависимости от удаленности предмета называется аккомодацией. Она увеличивается при рассматривании предметов на близком расстоянии и уменьшается при удалении предмета.

В колбочках содержится другое светочувствительное вещество —иодопсин. Он распадается в темноте и восстанавливается на свету в течение 3-5 мин. Расщепление иодопсина на свету дает цветовое ощущение. Из двух рецепторов сетчатки к цвету чувствительны только колбочки, которых в сетчатке три вида: одни воспринимают красный цвет, другие —зеленый, третьи —синий. В зависимости от степени возбуждения колбочек и сочетания раздражений воспринимаются различные другие цвета и их оттенки.

В компьютерной промышленности эти цвета тоже называются тремя первичными цветами – RGB (Red, Green, Blue). Все цвета, встречающиеся в природе, можно создать, смешивая эти цвета и изменяя их интенсивность. Смесь, состоящая из 100% каждого цвета, дает белый свет. Отсутствие всех цветов дает отсутствие света или черный свет.

Зрительный нерв — аналог кабеля, который передает сигнал от фотоэлементов на регистрирующее устройство в видеокамере, а в глазу — от палочек и колбочек дальше в мозг, в том месте, где этот нерв входит в глаз, нет ни палочек, ни колбочек. Называется это место слепое пятно. О его существовании первым узнал французский физик Эд Мариотт в далеком 1668 г. Он даже придумал специальный рисунок для его нахождения.


Близорукость.У близоруких изображение формируется не на сетчатке, а перед ней. У такого человека обычно либо увеличенное расстояние от роговицы до сетчатки, либо радиус кривизны роговицы слишком маленький, т.е. роговица слишком «крутая» и лучи света преломляет сильно. Но чаще встречается сразу сочетание этих двух моментов.

Читайте также:  За что отвечает правое полушарие головного мозга у мужчин


Рис.15.Дальнозоркость. Изображение формируется за сетчаткой. В этом случае, наоборот, либо у человека маленькое расстояние между роговицей и сетчаткой, либо сама роговица слишком плоска и слабо преломляет световые лучи.
Астигматизм. Это особый вид оптического строения глаза и вызван астигматизм, чаще всего, неправильностью кривизны роговицы. Получается, что ее передняя поверхность представляет собой не поверхность шара, где все радиусы равны, а отрезок вращающегося эллипсоида, где каждый радиус имеет свою длину. Получается изображение предмета при прохождении световых лучей через такую роговицу на сетчатке не в виде точки, а в виде отрезка прямой, при этом человек видит изображение искажённым одни линии чёткие другие размытые.

Рис.16.Механизм аккомодации глаза.

Дата добавления: 2015-05-06 ; просмотров: 924 | Нарушение авторских прав

а) Зрительный нерв, зрительный путь. Зрительный нерв образован аксонами ганглиозных клеток сетчатки. Аксоны покрыты миелиновой оболочкой в месте их выхода из диска зрительного нерва.

Количество ганглиозных клеток значительно варьирует у разных людей и составляет в среднем 1 млн. Поскольку каждая ганглиозная клетка входит в зрительный нерв, количество аксонов в нем соответственно изменяется.

Ганглиозные клетки сетчатки имеют общее происхождение с чувствительными нейронами спинного мозга. Зрительный нерв гомологичен белому веществу спинного мозга и не является периферическим нервом. В главе 9 отмечено, что истинные периферические, черепные или спинномозговые нервы содержат шванновские клетки, покрыты коллагеновой оболочкой и способны к регенерации. Зрительный нерв содержит клетки нейроглии центрального типа (астроциты и олигодендроциты) и не способен к регенерации у млекопитающих. Кроме того, зрительный нерв покрыт мозговыми оболочками с расположенным между ними подпаутинным пространством. Подобное строение объясняет изменения на поверхности глазного дна при повышении внутричерепного давления (отек диска зрительного нерва).

В зрительном перекресте волокна от назальной (медиальной) половины сетчатки входят в противоположный зрительный путь, а волокна от височной (латеральной) половины сетчатки не переходят на другую сторону и попадают в зрительный путь той же стороны. Информация от сетчатки поступает к среднему мозгу (участвующему в регуляции движений глаз, размера зрачка и циркадных ритмов) и латеральному коленчатому ядру таламуса (откуда направляется к зрительной коре, отвечающей за различные аспекты зрения) от различных групп ганглиозных клеток.


Схема зрительных проводящих путей.
Два зрительных поля (правого и левого глаза) представлены раздельно без наложения.

На срезе мозга показаны зрительные проводящие пути, вид снизу.

Каждый зрительный путь огибает средний мозг и разделяется на медиальный и латеральный корешки:

1. Медиальный корешок зрительного тракта. Медиальный корешок содержит 10 % волокон зрительного нерва. Он входит в средний мозг с боковой стороны и включает четыре различных группы волокон.
— Часть волокон, особенно от М-клеток сетчатки, входит в верхний холмик и обеспечивает автоматический анализ информации, как, например, при чтении этой страницы.
— Часть волокон проходит через верхний холмик к подушке таламуса; они составляют фрагмент экстраколенчатого проводящего пути к зрительной коре больших полушарий.
— Часть волокон входит в предпокрышечное ядро и участвует в зрачковом световом рефлексе.
— Часть волокон достигает мелкоклеточной ретикулярной формации, где они выполняют функцию возбуждения.

Нервные цепочки ЛКТ напоминают таковые в других релейных таламических ядрах и включают тормозные (γ-аминомасляная кислота, ГАМК) терминали, отходящие от вставочных нейронов и от таламического ретикулярного ядра. (Часть ретикулярного ядра, взаимодействующая с ЛКТ, носит название околоколенчатое ядро.) Корково-коленчатые волокна начинаются в первичной зрительной коре и образуют контакты с дистальными отделами дендритов релейных клеток, а также с тормозными вставочными нейронами. Количество синапсов корковых нейронов с релейными клетками в два раза превышает количество контактов ганглиозных клеток сетчатки.

Корковая стимуляция обычно усиливает реакцию релейных клеток в ответ на импульсы, полученные от сетчатки. Вероятно, но не доказано, что их функция заключается в селективном усилении различных аспектов зрительного восприятия, таких как поиск объекта известной формы или цвета. При функциональной магнитно-резонансной томографии (фМРТ) можно обнаружить области повышенной нейрональной активности головного мозга. При фМРТ было установлено, что если доброволец ожидает увидеть на экране интересующий объект, метаболическая активность в ЛКТ увеличивается до появления стимула.

Читайте также:  Ребенок потерял сознание причина


Левая зрительная лучистость. ЛКТ—Латеральное коленчатое тело.

б) Коленчато-шпорный путь и первичная зрительная кора. Зрительная лучистость (коленчато-шпорный путь) имеет важное клиническое значение, поскольку поражение этой области часто происходит при тромбозе сосудов или опухолевом процессе в заднем отделе полушария головного мозга. Проводящий путь проходит от латерального коленчатого тела к первичной зрительной коре.

Строение зрительной лучистости показано на рисунках ниже. Волокна, лежащие в нижней половине первичной зрительной коры, направляются кпереди в височную долю в виде петли Мейера, а затем поворачивают кзади и сопровождают волокна от верхней половины. Путь входит в зачечевицеобраз-ную часть внутренней капсулы и располагается в белом веществе под латеральной височной корой. Он прилежит к заднему рогу бокового желудочка до поворота в медиальном направлении и прохождения в затылочную кору.

Первичная зрительная кора занимает стенки шпорной борозды по всей ее длине (глубина борозды—10 мм). Она прилежит также к медиальной поверхности полушария на 5 мм выше и ниже борозды и к затылочному полюсу мозга на расстояние 10 мм. Общая площадь составляет 28 см 2 . При ранней аутопсии кору легко определяют по тонкому пучку белого вещества (зрительная полоска Дженнари) в толще серого вещества, что объясняет альтернативное название — стриарная, или полосатая, кора. Левый и правый глаза представлены в коре чередующимися полосами,называемые глазными доминантными колонками.

1. Ретинотопическая карта. Зрительное поле противоположной стороны проецируется в виде перевернутого изображения. Плоскость шпорной борозды расположена горизонтально. Сетчатка расположена спереди назад со значительно более широко представленной центральной ямкой в задней половине шпорной коры.


Проводящий путь от зрительного поля правого глаза к первичной зрительной коре.
Т указывает на височную (темпоральную) половину зрительного поля. N обозначает назальную (внутреннюю) половину левого зрительного поля.
В левой сетчатке и зрительном нерве (ЗН) полученное изображение представлено зеркально отраженным и перевернутым.
Правая сетчатка и зрительный нерв неактивны, так как этот глаз экранирован.
В зрительном перекресте (ЗПер) аксоны, образующие назальную половину левого зрительного нерва, пересекают среднюю линию и образуют медиальную половину правого зрительного пути (ЗП).
Волокна, расположенные в латеральной половине нерва, проходят в латеральной половине левого зрительного пути.
Каждая группа волокон образует контакты с соответствующим латеральным коленчатым телом (ЛКТ).
Зрительные лучистости (ЗЛ) имеют веерообразное строение; их аксоны, передающие информацию от центральных ямок, вначале располагаются в центре пучка.
По мере их приближения к затылочному полюсу аксоны центральной ямки (красного цвета) в обоих полушариях смещаются кзади и входят в задний отдел первичной зрительной коры (ПЗК).
Обратите внимание на тип прохождения аксонов к коре с обеих сторон (полосами).
Интервалы между ними имеют одинаковую ширину и содержат волокна, идущие к зрительной коре и образующие зрительное поле правого глаза.
ВХ—верхний холмик.

2. Поражения зрительных проводящих путей. Исследование зрительных путей имеет следующие особенности:

• Пациент может не подозревать о слепоте весьма значительной степени—в некоторых случаях даже о гемианопсии.

• Значительные зрительные нарушения можно выявить при обычном противопоставлении, как указано далее. Пациент закрывает попеременно каждый глаз и фокусирует взгляд на носу врача. Врач, сидя напротив, смотрит пациенту в глаз, внося в поле зрения одну или другую руку с различных сторон, покачивая указательным пальцем.

• В слепой зоне пациент не видит темноту—пациент вообще ничего не видит.

— Зрительные дефекты описывают с точки зрения пациента относительно зрительных полей. Для упрощения схемы представления зрительных полей, отмеченных цифрами от 1 до 9, черный цвет используют для обозначения области, в которой зрение отсутствует. На самом деле на схемах зрительных полей указывают области с сохранным зрением (в противоположность представленным графически) Слепое пятно не обозначают, но оно должно располагаться темпоральнее (латеральнее) центральной точки фиксации взгляда.]

Читайте также:  Бца исследование головного мозга

• Возможные места повреждения зрительных проводящих путей показаны на рисунке ниже. Проявления соответствуют представленным номерам в ниже.


Дефекты зрительных полей, возникающие при различных поражениях зрительных проводящих путей:
1. Частичное, зрительного нерва — Ипсилатеральная скотома
2. Полное, зрительного нерва — Слепота на этот глаз
3. Зрительный перекрест — Битемпоральная гемианопсия
4. Зрительный путь — Контралатеральная гомонимная геминанопсия
5. Петля Мейера — Контралатеральная гомонимная верхняя квадрантанопсия
6. Зрительная лучистость — Контралатеральная гомонимная гемианопсия
7. Зрительная кора — Контралатеральная гомонимная гемианопсия
8. Макулярная кора, двустороннее — Двусторонние центральные скотомы
9. Задние отделы зрительной коры — Височная серповидная контралатеральная гомонимная гемианопсия

Примечания по приведенным выше поражениям:

1. Эксцентрические поражения зрительного нерва приводят к образованию скотом в назальном или височном поле зрения пораженного глаза. При развитии скотомы у молодых взрослых всегда следует подозревать рассеянный склероз.

2. Полное поражение зрительного нерва может возникать при черепно-мозговой травме.

3. Сдавление середины перекреста чаще всего бывает вызвано аденомой (доброкачественной опухолью) гипофиза.

4. Поражения зрительного пути встречают редко. Несмотря на то, что выпадают гомонимные (односторонние) зрительные поля, наружная, неприкрытая половина зрительного пути, поражается чаще, чем внутренняя половина, поэтому гемианопсию обозначают как несимметричную.

5. Избирательное поражение петли Мейера встречают при опухолях височной доли.

6. Поражение зрительной лучистости встречают при опухолях височной, теменной или затылочной долей. Зрительные поля обоих глаз обычно выпадают в одинаковой степени (симметрично), и желтое пятно остается интактным. Опухоли, инфильтрирующие лучистость снизу, приводят к дефекту в нижнем квадранте. Основной пучок лучистости расположен в зачечевицеобразном отделе внутренней капсулы и часто поражается при отеке, сопровождающем кровотечение из ветви средней мозговой артерии (классический инсульт).

7. Тромбоз задней мозговой артерии сопровождается гомонимной гемианопсией. Пробелы в зрительном поле № 7 указывают на сохранность желтого пятна (макулы). Сохранность макулярных половин полей зрения непостоянна и часто обусловлена двойным кровоснабжением затылочного полюса из средней и задней мозговых артерий.

8. Двусторонние центральные скотомы наиболее часто развиваются при падении на затылок с ушибом мозга в затылочном отделе.

в) Резюме. В процессе эмбриогенеза сетчатка развивается из наружного выпячивания диэнцефалона. Эмбриональный зрительный бокал состоит из наружного пигментного слоя и внутреннего оптического слоя, между которыми расположено внутрисетчаточное (интраретинальное) пространство. Оптический слой образован тремя типами радиально расположенных нейронов (фоторецепторами, биполярными клетками и ганглиозными клетками) и двумя типами тангенциально (по касательной линии) расположенных клеток (горизонтальными и амакриновыми). Во всех отделах кроме центральной ямки свет должен пройти через другие слои сетчатки, чтобы попасть на фоторецепторы.

Две трети зрительного поля — бинокулярные, наружная 1/6 с каждой стороны—монокулярная. Зрительные дефекты описывают относительно зрительных полей.

ЛКТ — двустороннее образование, получающее информацию от противоположной назальной половины сетчатки (через зрительный перекрест), а также от ипсилатеральной височной половины сетчатки. Обе группы аксонов проходят через зрительный тракт, от которого также отходят коллатерали к среднему мозгу для образования низших зрительных рефлексов.

Зрительная лучистость (коленчато-шпорный тракт) начинается от М- и Р-клеток ЛКТ и огибает боковой желудочек, достигая первичной зрительной коры в стенках шпорной борозды.

Разнообразные дефекты зрительных полей возникают вследствие повреждения любого из пяти главных отделов зрительных проводящих путей (зрительного нерва, зрительного перекреста, зрительного тракта, зрительной лучистости и зрительной коры).

— Вернуться в оглавление раздела «Неврология.»

Редактор: Искандер Милевски. Дата публикации: 21.11.2018

Читайте также:
Adblock
detector